Funct. Mater. 2023; 30 (2): 243-254.


MHD ternary hybrid nanofluid flow over a porous stretching sheet with various effects of Boussinesq and Rosseland approximations

M.I. Kopp1, V.V. Yanovsky1,2

1Institute for Single Crystals, NAS Ukraine, Nauky Ave. 60, Kharkov 61001, Ukraine
2V.N. Karazin Kharkiv National University 4 Svobody Sq., Kharkov 61022, Ukraine


In this paper, we study the magnetohydrodynamic (MHD) flow of a ternary hybrid nanofluid in a porous medium caused by a stretching sheet under conditions of heat ab- sorption/generation and the action of thermal radiation. The stationary convective flow of a ternary hybrid nanofluid is considered in the case of linear, quadratic, and nonlinear Rosseland approximations, taking into account Boussinesq quadratic thermal oscillations. Basic partial differential equations (PDEs) are transformed into ordinary differential equa- tions (ODEs) using similarity transformations. There are three types of nanoparticles in the fluid flow: spherical, cylindrical, and platelets. The boundary value problem (bvp) is used in the Maple computer software to solve transformed equations numerically. The computed results for relevant parameters such as velocity profile, temperature profile, skin friction coefficient, local Nusselt number are visually shown and explained in detail.

magnetohydrodynamic flow, ternary hybrid nanofluid, nonlinear Boussinesq approximation, thermal radiation of Rosseland, stretching sheet.

1. S. L. Goren, Chem. Eng. Sci., 6-7, 515 (1966)

2. K. Vajravelu, K. S. Sastri, Int. J. Heat Mass Transf., 20, 655 (1977).

3. M. K. Partha, Appl. Math. Mech., 31, 565 (2010).

4. C. RamReddy, P. Naveen, D. Srinivasacharya, Nonlinear Engineering, 8, 94 (2019).

5. S.U.S. Choi, J. A. Eastman, Am. Soc. Mech. Eng. Fluids Eng. Div. FED., 231, 99 (1995).

6. S. Rosseland, Astrophysik aud Atom-Theoretische Grundlagen (Springer: Berlin/Heidelberg, Germany), 1931.

7.Viskanta R., Grosh R.J. Int. J. Heat Mass Transf. 1962, 5, 795-806.

8. C. Perdikis, A. Raptis, Heat Mass Transf., 31, 381 (1996).

9. R. Cortell, Chin. Phys. Lett., 25, 1340 (2008).

10. A. Pantokratoras, Int. J. Therm. Sci., 84, 151 (2014).

11. B. K. Jha, G. Samaila, JPME, 236 (2021).

12. M. Waqas, S. A. Shehzad, T. Hayat, M. I. Khan, A. Alsaedi, J. Phys. Chem. Solids, 133, 45 (2019).

13. B. Mahanthesh, Quadratic Radiation and Quadratic Boussinesq Approximation on Hybrid Nanoliquid Flow. In Mathematical Fluid Mechanics, De Gruyter Berlin, Germany, 2021, pp. 13-54.

14. K. Thriveni, B. Mahanthesh, Int. Commun. Heat Mass Transf., 124, 105264 (2021).

15. B. Mahanthesh, T. V. Joseph, K. Thriveni, Dynamics of non-Newtonian nanoliquid with quadratic thermal convection. Mathematical Fluid Mechanics: Advances in Convective Instabilities and Incompressible Fluid Flow, edited by B. Mahanthesh, Berlin, Boston: De Gruyter, 2021, pp. 223-248.

16. T. Anusha, U.S. Mahabaleshwar, Y. Sheikhnejad, Transp. Porous Med., 142, 333 (2021).

17. G. K. Ramesh, J.K. Madhukesh, S.A. Shehzad, A. Rauf, Proc. Inst. Mech. Eng. E: J. Process Mech. Eng., 2022, 1-10 (2022).

18. S. Manjunatha, V. Puneeth, B. J. Gireesha, A. J. Chamkha, J. Appl. Comput. Mech.,8, 1279 (2022).

19. I. L. Animasaun, S. J. Yook, T. Muhammad, A. Mathew, Surf. Interfaces, 28, 101654 (2022).

20. T. Maranna, U. S. Mahabaleshwar, M. I. Kopp, J. App. Comp. Mech., online from 24 October 2022 (2023) (in print).

21. K. Guedri et al., Mathematical Problems in Engineering, Volume 2022, Article ID 3429439, 14 pages (2022).

22. K. Sajjan et al., AIMS Mathematics, 7, 18416 (2022).

23. G. Gupta, P. Rana, Mathematics, 10, 3342 (2022).

Current number: