Funct. Mater. 2023; 30 (2): 282-289.

doi:https://doi.org/10.15407/fm30.02.282

Growth of Fe-BTC particles beneath stearic acid Langmuir monolayers and research on its adsorption of methyl orange

Yuan-Sheng Ding, Fei Lu

School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, 132022 Jilin, P.R.China

Abstract: 

Langmuir monolayers of stearic acid (SA) were used as a template to induce the nucleation and growth of Fe-BTC microparticles. X-ray diffraction (XRD) patterns, Fourier transform infrared spectroscopy (FTIR), BET and microscopy techniques were employed to investigate the particles. In the absence of the template, the Fe-BTC particles show a bulky morphology, while round-shaped Fe-BTC is nucleated beneath a Langmuir monolayer. The Fe-BTC material has been found to have excellent adsorption properties for the organic dye methyl orange in aqueous solutions, exhibiting both high adsorption capacity and rate. Adsorption capacity of Fe-BTC for Methyl Orange(MO) was retained high and stable in a wide range of pH values from 2 to 9. The adsorption capacity of Fe-BTC for MO is described by a pseudo-second-order model, implying that chemisorption is responsible for the process. The adsorption data were analyzed and found to be in line with the Langmuir isotherm model, indicating the monolayer adsorption.

Keywords: 
Langmuir monolayer, Fe-BTC, bionic mineralization, adsorption; methyl orange.
References: 

1. C.Y.Tang, P.Yu, L.S.Tang et al., Ecotoxicol. Environ. Saf., 165, 299 (2018).
https://doi.org/10.1016/j.ecoenv.2018.09.009

2. Y.C.Yu, Z.J.Hu, Y.L.Zhang, H.W.Gao, RSC Adv., 6, 18577 (2016).
https://doi.org/10.1039/C5RA27714K

3. N.B.Turan, H.S.Erkan, F.Ilhan, G.O.Engin, Water Environ. Res., 94, e1683.1 (2022).

4. T.Q.Liu, C.O.Aniagor, M.I.Ejimofor et al., J. Ind. Eng. Chem. , 117, 21 (2023).
https://doi.org/10.1016/j.jiec.2022.10.008

5. D.Mondal, S.Roy, S.Bardhan et al., S. Das. Dalton. Trans., 51, 451 (2022).
https://doi.org/10.1039/D1DT02653D

6. M.D.M.Darder, M.Bedoya, L.A.Serrano et al., Sens. Actuators B. Chem., 353, 131099 (2022).
https://doi.org/10.1016/j.snb.2021.131099

7. B.Panella, M.Hirscher, H.Putter, U.Muller, Adv. Funct. Mater., 16, 520 (2006).
https://doi.org/10.1002/adfm.200500561

8. M.U.Nisa, Y.Chen, X.Li, Z.Li, J. Taiwan. Inst. Chem. Eng., 51, 10744 (2020).

9. M.Li, G.Ren, W.Yang et al., Chem. Commun., 57, 1340 (2021).
https://doi.org/10.1039/D0CC06478E

10. A.Zukal, M.Opanasenko, M.Rube et al., Catal Today, 2015, 24369 (250).

11. F.Dorosti, A.Alizadehdakhel, Saf. Environ. Prot., 136, 119 (2018).
https://doi.org/10.1016/j.cherd.2018.01.029

12. G.R.Delpiano, D.Tocco, L.Medda et al., J. Mol. Sci., 22, 788 (2021).
https://doi.org/10.3390/ijms22020788

13. E.Garcia, Rojas Medina, Ricardo Lopez, Lozano, & M.May et al., Materials, 7, 8037 (2014).
https://doi.org/10.3390/ma7128037

14. I.Segovia-Campo, A.Martignier, M.Filel et al., Micro. Biol., 24, 537 (2022).
https://doi.org/10.1111/1462-2920.15498

15. A.W.Williams, D.S.Jackson, A.J.Grillo et al., Small, 6, 1191 (2010).
https://doi.org/10.1002/smll.200901186

16. M.Mahato, P.Pal, B.Tah et al., Mater. Chem. Phys., 137, 665 (2013).
https://doi.org/10.1016/j.matchemphys.2012.10.021

17. Z.H.Xue, B.B.Hu, X.L.Jia et al., Mater. Chem. Phys., 114, 47 (2009).
https://doi.org/10.1016/j.matchemphys.2008.07.002

18. S.Bhattacharjee, Indian J. Chem., 57, 778 (2018).

19. F.Dorosti, A.Alizadehdakhel, Chem. Eng. Res. Des., 136, 119 (2018).
https://doi.org/10.1016/j.cherd.2018.01.029

20. A.Yuan, Y.Lu, X.Zhang et al., J. Mater. Chem. B, 8, 9295 (2020).
https://doi.org/10.1039/D0TB01598A

21. H.Liang, C.Zou, Can. J. Chem. Eng., 97, 1894 (2019).
https://doi.org/10.1002/cjce.23452

20. A.Karami, R.Shomal, R.Sabouni et al., Energies, 15, 4642 (2022).
https://doi.org/10.3390/en15134642

Current number: