Funct. Mater. 2023; 30 (3): 350-355.

doi:https://doi.org/10.15407/fm30.03.350

Study of the effect of doping with (Zn,Tc) on the electronic and optical properties of FeNi3 alloys: ab-inition calculation

Yamina Benkrima1, Abdulhadi Mirdan Ghaleb2, Djamel Belfennache3, Radhia Yekhlef3, Afif Benameur4

1Ecole Nrmale Superieure de Ouargla, 30000 Ouargla, Algeria
2Department of Physics, College of Science, University of Kirkuk, Iraq
3Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014 Algiers, Algeria
4Faculty of Science and Technology, University of Mustapha Stambouli of Mascara, 29000, Algeria

Abstract: 

The structural, electronic and optical properties of the FeNi2Zn and FeNi2Tc alloys were studied using the first-principles planar wave method compatible with the ultrasoft pseudopotential scheme under the density functional theory (DFT). The calculated equilibrium lattice constant for FeNi3 is very close with other available results. It turns out that the large contribution of d electrons to the total electronic density of states is dominant, which in turn affects the electronic and magnetic properties of these alloys. The electronic band structure, total and partial electron density were analyzed and it was concluded that the FeNi2Tc alloy has greater magnetic properties; absorption coefficient, optical conductivity, and refractive index were calculated for both alloys.

Keywords: 
density functional theory DFT, FeNi<sub>2</sub>Zn, FeNi<sub>2</sub>Tc, electronic properties, magnetic properties, optic properties.
References: 

1. M.Futamoto et al., AIP Adv., 6, 85302 (2016).
https://doi.org/10.1063/1.4960554

2. K.M.Krishnan et al., J. Appl. Phys., 83, 6810 (1998).
https://doi.org/10.1063/1.367815

3. K.M.Krishnan et al., J. Mater. Sci., 41, 793 (2006).
https://doi.org/10.1007/s10853-006-6564-1

4. I.Koh, Sensors, 9, 8130 (2009).
https://doi.org/10.3390/s91008130

5. M.Neamtu et al., Sci. Rep., 8, 6278 (2018).
https://doi.org/10.1038/s41598-018-24721-4

6. R.Ferrando, J.Jellinek, R.L., Chem. Rev., 108, 845 (2008).
https://doi.org/10.1021/cr040090g

7. A.Edstrom et al., Phys. Rev. B, 90, 14402 (2014).
https://doi.org/10.1103/PhysRevB.90.014402

8. I.Shuttleworth, Magnetochemistry, 6, 61 (2020).
https://doi.org/10.3390/magnetochemistry6040061

9. E.Burzo, P.Vlaic, J. Optoelectron. Adv. Mater., 12, 1869 (2010).

10. N.Y.Pandya, A.D.Mevada, P.N.Gajjar, Comput. Mater. Sci., 123, 287 (2016).
https://doi.org/10.1016/j.commatsci.2016.07.001

11. M.J.Wang, G.W.Zhang, H.Xu, J. Phys. Conf. Ser., 1507, 082026 (2020).
https://doi.org/10.1088/1742-6596/1507/8/082026

12. D.Ruibin, C.Xiaoshuang, Z.Huxian et al., J. Phys. B: At. Mol. Opt. Phys., 44, 035102 (2011).

13. U.G.Gabriel, A.C.Reber, S.N.Khanna, New. J. Chem., 37, 3928 (2013).
https://doi.org/10.1039/c3nj01075a

14. Y.Benkrima, A.Ouahab, Der Pharma Chemica., 9, 62 (2017).

15. J.M.Soler, R.B.Marcela, M.Karo et al., Phys. Rev. B, 61, 5771 (2000).
https://doi.org/10.1103/PhysRevB.61.5771

16. J.M.Soler, E.Artacho, J.D.Gale et al., J. Phys. Condens. Matter., 14, 2745 (2002).
https://doi.org/10.1088/0953-8984/14/11/302

17. B.Nourozia, A.Aminian, N.Fili et al., Results in Physics, 12, 2038 (2019).
https://doi.org/10.1016/j.rinp.2019.02.054

Current number: