Funct. Mater. 2023; 30 (3): 356-362.

doi:https://doi.org/10.15407/fm30.03.356

A new Cu(II) complex constructed from 4-[(8-hydroxy-5-quinolinyl) azo]-benzoic acid: synthesis, crystal structure and antibacterial property

Yanan Luo1, Hongxu Bai2, Hongri Fan3, Liying Yu2, Heyun Zhu1, Jiamu Song1, Jiao Guan1

1College of Pharmacy, Jilin Medical University, 5 Jilin Str., 132013 Jilin, P. R. China
2College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, 45 Chengde Str., 132022 Jilin, P. R. China
3Guangxi Vocational & Technical Institute of Industry, 37 Xiuling Str., 530001 Guangxi, P. R. China

Abstract: 

By using 4-[(8-hydroxy-5-quinolinyl) azo]-benzoic acid (H2L) ligand, a new inorganic-organic hybrids, formulated as [Cu(HL-)2]·2DMA (1) (DMA = N,N-Dimethylacetamide), has been synthesized successfully under conventional solvothermal conditions. Complex 1 exhibits a zero-dimensional (0D) structure, which is linked into a one-dimensional (1D) supramolecular network by π-π stacking interaction. In addition, the antibacterial property of complex 1 was tested. The antibacterial property of complex 1 in relation to Gram-positive bacteria is slightly better than in relation to Gram-negative bacteria in complex 1.

Keywords: 
solvothermal conditions, supramolecular network, antibacterial property, π-π stacking interaction.
References: 

1. S.Kitagawa, K.Uemura, Inorg. Chem. Soc. Rev., 34, 109 (2005).
https://doi.org/10.1039/b313997m

2. Z.Ju, D.Cao, L.Qin et al., Cryst. Eng. Comm., 16, 3917 (2014).
https://doi.org/10.1039/C3CE42477D

3. P.Horcajada, T.Chalati, C.Serre et al., Nat. Mater., 9, 172 (2010).
https://doi.org/10.1038/nmat2608

4. S.Yuhong, H.Hong, Inorg. Chem. Commun., 105, 158 (2019).
https://doi.org/10.1016/j.inoche.2019.05.008

5. C.Miao, T.E.Su, Inorg. Chem. Commun., 112, 1 (2020).
https://doi.org/10.1016/j.inoche.2019.107733

6. S.M.Wu, X.L.Li, Y.Xu et al., Ceram. Int., 44, 19390 (2018).
https://doi.org/10.1016/j.ceramint.2018.07.170

7. X.Hw, Z.Gan, S.Fisenko et al., Dalton T., 9, 9688 (2017).
https://doi.org/10.1021/acsami.6b16817

8. K.P.Bai, L.J.Zhou, G.P.Yang et al., J. Solid State Chem., 287, 121336 (2020).
https://doi.org/10.1016/j.jssc.2020.121336

9. K.K.Gangu, S.B.Mukkamala, Synth. React. Inorg. M., 46, 98 (2015).
https://doi.org/10.1080/15533174.2014.900788

10. K.K.Gangu, S.Maddila, S.B.Mukkamala et al., Inorg. Chim. Acta, 466, 61 (2016).
https://doi.org/10.1016/j.ica.2016.02.062

11. J.Osterrieth, F.J.David, Bio. Technol. J., 16, 1 (2020).

12. L.Li, Y.Chen, L.Yang et al., Coord. Chem. Rev., 411, 213 (2020).

13. V.R.Maria, F.Balas, D.Arcos, Angew. Chem. Int. Ed., 46, 7548 (2007).
https://doi.org/10.1002/anie.200604488

14. J.S.Park, S.Jeong, S.Dho et al., Dyes Pigments, 87, 4954 (2010).
https://doi.org/10.1016/j.dyepig.2010.02.003

15. O.V.Dolomanov, L.J.Bourhis, R.J.Gildea et al., J. Appl. Crystallogr., 42, 339 (2009).
https://doi.org/10.1107/S0021889808042726

16. G.M.Sheldrick. SHELXTL NT Crystal Structure Analysis Package[CP]. Version 5.10; Bruker AXS, Analytical X-ray System: Madison, WI (1999).

17. X.J.Duan, X.D.Du, B.B.Zhang et al., J. Med. Biol. Eng., 19, 237 (2015).
https://doi.org/10.1016/S1261-694X(15)30032-8

Current number: