Funct. Mater. 2023; 30 (3): 387-392.

doi:https://doi.org/10.15407/fm30.03.387

About phase separation of aqueous polymeric two-phase dextran-polyvinylpyrrolidone systems

E.A.Masimov, S.R.Bagirova, Kh.T.Hasanova

Baku State University, 23 Z.Khalilov Str., AZ-1148 Baku, Azerbaijan

Abstract: 

The effect of the polyvinylpyrrolidone molecular weight on the phase separation of an aqueous two-phase dextran-PVP system has been studied. Mathematical expressions of concentration dependences CPVP versus CDex for the two-phase systems formed by dextran and polyvinylpyrrolidone of various molecular weights are obtained. It is shown that all these dependences are described by the generalized equation CPVP = K·e-αCDex which makes it possible to construct binodal curves of these systems without experiments. It has been established that for polyvinylpyrrolidones with high molecular weights, phase separation in the systems occurs at lower concentrations of phase-forming components. Thus, the results of the study confirm the fundamental role of water in the processes of phase separation of the polymer-polymer-water system. To elucidate the mechanism of the influence of various external factors on the compatibility of polymers in a common solvent, the influence of temperature on phase separation in the dextran-PVP-water two-phase system has been studied. The interaction parameters between the components of the system are calculated, the differences between these parameters (Δχ = χ P 1 - H2O - χP2-H2O) are determined, and the dependence of the effect on temperature is studied. With increasing temperature, the effect decreases and at the same time, the compatibility of polymers in aqueous solution improves.

Keywords: 
dextran, polyvinylpyrrolidone, water-polymer two-phase systems, phase separation, interaction parameter.
References: 

1. F.Wang, P.Altschuh, L.Ratke et al., Advanced Materials, 31, 1806733 (2019).
https://doi.org/10.1002/adma.201806733

2. B.Yu.Zaslavsky, Aqueous Two-Phase Partitioning: Physical Chemistry and Bioanalytical Applications, CRC Press, New York (1994).

3. A.R.Titus, P.P.Madeira, L.A.Ferreira et al., Int. J. Mol. Sci., 23, 14366 (2022).
https://doi.org/10.3390/ijms232214366

4. Yu.H.Guan, T.H.Lilley, T.E.Treffry, J. Chem. Soc., Faraday Trans., 89, 4283 (1993).
https://doi.org/10.1039/ft9938904283

5. R.J.Hefford, Polymer, 25, 979 (1984).
https://doi.org/10.1016/0032-3861(84)90083-1

6. M.F.Chaplin, Molecular Biology and Biotechnology, 6th ed. R.Rapley and D.Whitehouse, Royal Society of Chemistry, Cambridge (2015), p.225.

7. M.F.Chaplin, Biophys. Chem., 83, 211 (2000).
https://doi.org/10.1016/S0301-4622(99)00142-8

8. B.Yu.Zaslavsky, T.O.Bagirov, A.A.Borovskaya et al., Colloid and Polym. Scien., 264, 1066 (1986).
https://doi.org/10.1007/BF01410324

9. P.A.Albertsson, Partition of Cell Particles and Macromolecules, 3rd ed., J.Wiley and Sons, Chichester, New York (1986).

10. O.Aguilar, M.Rito-Palomares, Methods Mol. Biol., 1129, 89 (2014).
https://doi.org/10.1007/978-1-62703-977-2_9

11. Z.Gu, C.E.Glatz, Z.Gu Z et al., J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 845, 38 (2007).
https://doi.org/10.1016/j.jchromb.2006.07.025

12. R.Hatti-Kaul, Mol. Biothechnol., 19, 1 (2001).
https://doi.org/10.1385/MB:19:1:001

13. M.Iqbal, Y.Tao, S.Xie et al., Biol. Proced. Online, 18, 18 (2016).
https://doi.org/10.1186/s12575-016-0048-8

14. H.Walter, G.Johansson, In Methods in Enzymology, 228, 3 (1994).
https://doi.org/10.1016/0076-6879(94)28003-7

15. J.F.B.Pereira, J.A.P.Coutinho, Liquid-Phase Extraction. Handbooks in Separation Science (2020), p.157.
https://doi.org/10.1016/B978-0-12-816911-7.00005-0

16. V.G.Kadaiji, G.V.Betagiri, Polymers, 3, 1972 (2011).
https://doi.org/10.3390/polym3041972

17. M.Teodorescu, M.Bercea, IPolymer-Plastics Technology and Engineering, 54, 923 (2015)
https://doi.org/10.1080/03602559.2014.979506

J.Maia, M.B.Evangelista, H.Gil et al., Carbohydrates Applications in Medicine, 31 (2014).

18. V.Gupta, S.Nath, S.Chand, J. Polymer, 43, 3387 (2002).
https://doi.org/10.1016/S0032-3861(02)00117-9

19. L.Zeman, B.Patterson, Macromolecules, 3, 513 (1972).
https://doi.org/10.1021/ma60028a030

20. E.A.Masimov, T.O.Bagirov, Multicomponent and Multiphase Systems. Distribution of Substances in Multiphase Systems, Baku (2016).

21. E.A.Masimov, The Role of Water in Biological Sistems, Hydrofobic. Baku (2008).

22. B.Yu.Zaslavsky, T.O.Bagirov, A.A.Borovskaya et al., Polymer, 30, 2104 (1989).
https://doi.org/10.1016/0032-3861(89)90301-7

23. B.Yu.Zaslavsky, L.M.Miheeva, M.N.Rodnikova et al., J. Chem. Soc., Faraday Trans., 1, 2857 (1989).
https://doi.org/10.1039/f19898502857

24. B.Yu.Zaslavsky, N.M.Mestechkina, S.V.Rogozin et al., J. Chromatogr., 260, 329 (1983).
https://doi.org/10.1016/0021-9673(83)80040-5

25. M.Tanaka, T.Hayashi, S.Morita, Polym J., 45, 701 (2013).
https://doi.org/10.1038/pj.2012.229

26. K.T.Hasanova, A.A.Hasanov, S.R.Bagirova, AJP Fizika, 28, 3 (2022).

27. E.A.Masimov, T.O.Bagirov, Kh.N.Hasanova, Chem. Chem. Technology, 51, 123 (2008).

28. S.Bagirova, News of Baku University, Ser. Phys.-Math. Sciences, 2, 146 (2022).

29. M.L.Huggins, J. of Phys. Chem., 46, 151 (1942).
https://doi.org/10.1021/j150415a018

30. P.J.Flory, J. Chem. Phys., B9, 660 (1941).
https://doi.org/10.1063/1.1750971

31. U.W.Gedde, M.S.Hedenqvist, Fundamental Polymer Science (Graduate Texts in Physics), Springer, 2nd edition (2019).
https://doi.org/10.1007/978-3-030-29794-7

32. J.Qian, A.Rudin, Eur. Polym. J., 28, 725 (1992).
https://doi.org/10.1016/0014-3057(92)90075-D

33. A.P.Safronov, L.V.Adamova, G.V.Kurlyandskaya, Polymer Science, Series A, 61, 29 (2019).
https://doi.org/10.1134/S0965545X19010139

34. B.A.Wolf, Adv. Polym. Sci., 238, 1 (2011).

35. B.A.Wolf, Macromol Chem. Phys., 204, 1381 (2003).
https://doi.org/10.1002/macp.200350002

36. N.Schuld, B.A.Wolf, in: J.Brandrup, E.H.Immergut, E.A.Grulke (eds) Polymer Handbook, 4th edn. Wiley, New York (1999).

37. R.L.Scott, J. Polym. Sci., 9, 423 (1952).
https://doi.org/10.1002/pol.1952.120090504

38. N.P.Young, N.P.Balsara, in: S.Kobayashi, K.Mullen (eds), Encyclopedia of Polymeric Nanomaterials, Springer, Berlin, Heidelberg (2014).

39. T.Patsahan, O.Pizio, Condens. Matter Phys., 25, 23201 (2021).
https://doi.org/10.5488/CMP.25.23201

40. I.Teraoka, Polymer Solutions: An Introduction to Physical Properties, John Wiley & Sons, Inc. (2002).
https://doi.org/10.1002/0471224510

Current number: