Funct. Mater. 2023; 30 (3): 441-446.

doi:https://doi.org/10.15407/fm30.03.441

A new 2D Ni(II) coordination polymer: synthesis, crystal structure, and electrochemical properties

Liying Yu1, Hongxu Bai1, Jiamu Song2, Heyun Zhu2, Jiao Guan2, Yanan Luo2

1College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, 45 Chengde Str., 132022 Jilin, P. R. China
2College of Pharmacy, Jilin Medical University, 5 Jilin Str., 132013 Jilin, P. R. China

Abstract: 

One Ni(II) metal organic coordination polymer based on H3L (H3L = 5-amino-8-hydroxyquinoline), {[Ni(H2L-)2]·H2O}n (1), has been synthesized. This compound has an infinite 2D layer structure. Compound 1 is the first example of a TiO2 photoanode co-sensitized by the H3L coordination compound with N719. In the tandem structure of 1/N719/c, compound 1 reorganizes the energy levels due to its single-crystal structure, which improves the photoelectric conversion efficiency. The results show that the 1/N719/H3L compound solar cell has excellent photovoltaic performance with a photovoltaic conversion efficiency of 3.34 % under standard solar irradiation conditions of AM 1.5. The electrochemical properties of compound 1 were studied.

Keywords: 
metal organic coordination polymer, hydrothermal conditions, supramolecular network, electrochemical property.
References: 

1. D.K.Singha, P.Majee, S.K.Mondal et al., Inorg. J. Photoch Photobio A., 365, 389 (2018).
https://doi.org/10.1016/j.jphotochem.2018.01.024

2. B.Zhang, J.Ying, X.Zhang et al., New J. Chem., 45, 13340 (2021).
https://doi.org/10.1039/D1NJ02283K

3. G.N.Gui, L.L.Wang, W.B.Liu et al., J. Solid State Chem., 304, 122562 (2021).
https://doi.org/10.1016/j.jssc.2021.122562

4. N.J.Shamle, A.C.Tella, A.C.Whitwood et al., J. Coord Chem., 74, 125 (2021).
https://doi.org/10.1080/00958972.2021.1896713

5. A.Haider, B.S.Bassil, Z.G.Lin et al., Dalton T., 50, 3923 (2021).
https://doi.org/10.1039/D0DT03392H

6. X.C.Chai, H.Li, M.Z.Li et al., Z. Naturforsch B., 76, 319 (2021).
https://doi.org/10.1515/znb-2021-0014

7. Y.N.Wang, S.D.Wang, L.Xu et al., J. Mol. Struct., 1233, 99 (2021).

8. P.Ju, H.Yang, L.Jiang et al., Spectrochim Acta A., 246, 118962 (2020).
https://doi.org/10.1016/j.saa.2020.118962

9. M.Yan, P.Zhu, S.Yang et al., Crystengcomm, 23, 4370 (2021).
https://doi.org/10.1039/D1CE00404B

10. M.Abedi, S.S.Abolmaali, R.Heidari et al., Int. J. Pharmaceut., 602, 120685 (2021).
https://doi.org/10.1016/j.ijpharm.2021.120685

11. J.J.Jiang, Y.Wang, D.S.Wang et al., Chinese J. Chem., 39, 2789 (2021).
https://doi.org/10.1002/cjoc.202100356

12. B.Safarkoopayeh, A.Abbasi, A.Shayesteh, Inorg. Chem. Commun., 127, 502 (2021).
https://doi.org/10.1016/j.inoche.2021.108502

13. O.V.Dolomanov, L.J.Bourhis, R.J.Gildea et al., J. Appl. Crystallogr., 42, 339 (2009).
https://doi.org/10.1107/S0021889808042726

14. G.M.Sheldrick. SHELXTL NT Crystal Structure Analysis Package[CP]. Version 5.10; Bruker AXS, Analytical X-ray System: Madison, WI (1999).

Current number: