Funct. Mater. 2023; 30 (4): 494-505.

doi:https://doi.org/10.15407/fm30.04.494

4′-Benzyloxyflavonol glucoside as fluorescent indicator for β-glucosidase activity

L.V. Chepeleva,1 D.O. Tarasenko,1 A.Y. Chumak,1 O.O. Demidov,1 A.D.Snizhko,1 O.O. Kolomoitsev,1 V.M. Kotliar,1 E.S. Gladkov1,2, A.L. Tatarets,2 A.V. Kyrychenko1,2, A. D. Roshal1

1Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022, Ukraine.
2State Scientific Institution "Institute for Single Crystals′′, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv 61072, Ukraine.

Abstract: 

Fluorescent flavonols and their glucosylated derivatives are promising tools for studying protein structure and enzyme activity screening. The fluorescence properties of such probes are tunable by electron-withdrawing substituents in 2-aryl ring, while a role of bulky hydrophobic groups has not been examined in-depth yet. Here, we examine the application of benzyloxy-substituted flavonol β-D-glucoside as a fluorescent indicator for the activity screening of the β-glucosidase enzyme in an aqueous solution. The rate constant of the enzymatic cleavage of an O-glycosidic bond in benzyloxy-substituted and un-substituted flavonol glucosides was compared using fluorescence kinetic measurements. We found that introducing a hydrophobic bulky benzyloxy group in the 4′-position of flavonol glucoside resulted in a 2.3-fold decrease in the hydrolysis rate constant. The molecular docking calculations allowed us to reveal critical molecular interactions in a flavonol-enzyme complex and identify favorable binding modes and the binding affinity of the flavonols towards the β-glucosidase protein. We found that upon adding a bulky benzyloxy group, the flavonol glucoside′s binding affinity towards the enzyme was increased from -9.9 to -10.8 kcal/mole. However, the stronger binding of the substituted glucoside would require a higher activation energy barrier to form an appropriate substrate-receptor transition state for the hydrolysis reaction, seen as some decrease in the rate constant. Finally, these findings promise that flavonol glucosides can be utilized as easy-to-use fluorescent indicators for rapid activity screening of other enzymes from a glucosidase family.

Keywords: 
flavonol, fluorescence probe, β-glucosidase, glycosidic bond cleavage, fluorescence indicator, molecular docking
References: 

1. I. E. Serdiuk, A. D. Roshal. Dyes and Pigments 138, 223-244 (2017).
https://doi.org/10.1016/j.dyepig.2016.11.028

2. A. S. Klymchenko. Acc. Chem. Res. 50, 366-375 (2017).
https://doi.org/10.1021/acs.accounts.6b00517

3. S. Höfener, P. C. Kooijman, J. Groen, F. Ariese, L. Visscher. Phys. Chem. Chem. Phys. 15, 12572-12581 (2013).
https://doi.org/10.1039/c3cp44267e

4. A. Y. Chumak, V. O. Mudrak, V. M. Kotlyar, A. O. Doroshenko. J. Photochem. Photobiol. A 406, 112978 (2021).
https://doi.org/10.1016/j.jphotochem.2020.112978

5. Z. Xu, X. Zhao, M. Zhou, Z. Zhang, T. Qin, D. Wang, L. Wang, X. Peng, B. Liu. Sens. Actuators, B 345, 130367 (2021).
https://doi.org/10.1016/j.snb.2021.130367

6. T. Qin, B. Liu, Y. Huang, K. Yang, K. Zhu, Z. Luo, C. Pan, L. Wang. Sens. Actuators, B 277, 484-491 (2018).
https://doi.org/10.1016/j.snb.2018.09.056

7. T. Qin, B. Liu, Z. Xu, G. Yao, H. Xu, C. Zhao. Sens. Actuators, B 336, 129718 (2021).
https://doi.org/10.1016/j.snb.2021.129718

8. A.D. Roshal. Chem. Record, e202300249 (2023).
https://doi.org/10.1002/tcr.202300249

9. A. Kyrychenko, A. S. Ladokhin. Chem. Record, e202300232 (2023).
https://doi.org/10.1002/tcr.202300232

10. X. Bi, B. Liu, L. McDonald, Y. Pang. J. Phys. Chem. B 121, 4981-4986 (2017).
https://doi.org/10.1021/acs.jpcb.7b01885

11. D. McMorrow, M. Kasha. J. Phys. Chem. 88, 2235-2243 (1984).
https://doi.org/10.1021/j150655a012

12. A. D. Roshal, J. A. Organero, A. Douhal. Chem. Phys. Lett. 379, 53-59 (2003).
https://doi.org/10.1016/j.cplett.2003.08.008

13. I. E. Serdiuk, A. D. Roshal. RSC Adv. 5, 102191-102203 (2015).
https://doi.org/10.1039/C5RA13912K

14. A. O. Doroshenko, A. V. Kyrychenko, O. M. Valyashko, V. N. Kotlyar, D. A. Svechkarev. J. Photochem. Photobiol. A 383, art. no. 111964 (2019).
https://doi.org/10.1016/j.jphotochem.2019.111964

15. A. P. Demchenko, S. Ercelen, A. D. Roshal, A. S. Klymchenko. Polish J. Chem. 76, 1287-1299 (2002).

16. V. F. Valuk, G. Duportail, V. G. Pivovarenko. J. Photochem. Photobiol. A 175, 226-231 (2005).
https://doi.org/10.1016/j.jphotochem.2005.05.003

17. X. Poteau, G. Saroja, C. Spies, R. G. Brown. J. Photochem. Photobiol. A 162, 431-439 (2004).
https://doi.org/10.1016/S1010-6030(03)00429-5

18. W. Liu, Y. Wang, W. Jin, G. Shen, R. Yu. Analyt. Chim. Acta 383, 299-307 (1999).
https://doi.org/10.1016/S0003-2670(98)00789-2

19. X. Jin, X. Sun, X. Di, X. Zhang, H. Huang, J. Liu, P. Ji, H. Zhu. Sens. Actuators, B 224, 209-216 (2016).
https://doi.org/10.1016/j.snb.2015.09.072

20. A. D. Roshal, A. V. Grigorovich, A. O. Doroshenko, V. G. Pivovarenko, A. P. Demchenko. J. Phys. Chem. A 102, 5907-5914 (1998).
https://doi.org/10.1021/jp972519w

21. A. D. Roshal, T. V. Sakhno, A. A. Verezubova, L. M. Ptiagina, V. I. Musatov, A. Wroblewska, J. Blazejowski. Funct. Mater. 10, 419-426 (2003).

22. A. Munoz, A. D. Roshal, S. Richelme, E. Leroy, C. Claparols, A. V. Grigorovich, V. G. Pivovarenko. Russ. J. Gen. Chem. 74, 438-445 (2004).
https://doi.org/10.1023/B:RUGC.0000030403.41976.5c

23. B. Liu, Y. Pang, R. Bouhenni, E. Duah, S. Paruchuri, L. McDonald. Chem. Commun. 51, 11060-11063 (2015).
https://doi.org/10.1039/C5CC03516C

24. K. A. Bertman, C. S. Abeywickrama, H. J. Baumann, N. Alexander, L. McDonald, L. P. Shriver, M. Konopka, Y. Pang. J. Mater. Chem. B 6, 5050-5058 (2018)
https://doi.org/10.1039/C8TB00325D

25. K. A. Bertman, C. S. Abeywickrama, A. Ingle, L. P. Shriver, M. Konopka, Y. Pang. J. Fluoresc. 29, 599-607 (2019). doi: 10.1007/s10895-019-02371-7.
https://doi.org/10.1007/s10895-019-02371-7

26. I. E. Serdiuk, M. Reszka, H. Myszka, K. Krzymiński, B. Liberek, A. D. Roshal. RSC Adv. 6, 42532-42536 (2016).
https://doi.org/10.1039/C6RA06062E

27. M. Reszka, I. E. Serdiuk, K. Kozakiewicz, A. Nowacki, H. Myszka, P. Bojarski, B. Liberek. Org. Biomol. Chem. 18, 7635-7648 (2020).
https://doi.org/10.1039/D0OB01505A

28. A. T. Adetunji, F. B. Lewu, R. Mulidzi, B. Ncube. J. Soil Plant Nutr. 17, 794-807 (2017).
https://doi.org/10.4067/S0718-95162017000300018

29. L. L. Escamilla-Treviño, W. Chen, M. L. Card, M.-C. Shih, C.-L. Cheng, J. E. Poulton. Phytochem. 67, 1651-1660 (2006).
https://doi.org/10.1016/j.phytochem.2006.05.022

30. A. V. Morant, K. Jørgensen, C. Jørgensen, S. M. Paquette, R. Sánchez-Pérez, B. L. Møller, S. Bak. Phytochem. 69, 1795-1813 (2008).
https://doi.org/10.1016/j.phytochem.2008.03.006

31. T. D. Butters. Curr Opin Struct Biol 11, 412-418 (2007)..
https://doi.org/10.1016/j.cbpa.2007.05.035

32. X. Zhou, Z. Huang, H. Yang, Y. Jiang, W. Wei, Q. Li, Q. Mo, J. Liu. Biomed Pharmacotherapy 91, 504-509 (2017).
https://doi.org/10.1016/j.biopha.2017.04.113

33. Z. Qiang, W. Chun, L. Yunping, P. Wenchen. Chin. J. Appl. Environ. Biol. 23, 232-237 (2017).
http://doi.org/ 10.3724/SP.J.1145.2016.04019.

34. R. S. Khodzhaieva, E. S. Gladkov, A. Kyrychenko, A. D. Roshal. Front. Chem. 9, 637944 (2021).
https://doi.org/10.3389/fchem.2021.637994

35. D. S. Goodsell, G. M. Morris, A. J. Olson. J. Mol. Recognit. 9, 1-5 (1996).
https://doi.org/10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6

36. O. Trott, A. J. Olson. J. Comput. Chem. 31, 455-461 (2010).
https://doi.org/10.1002/jcc.21334

37. P. Isorna, J. Polaina, L. Latorre-García, F. J. Cañada, B. González, J. Sanz-Aparicio. J. Mol. Biol. 371, 1204-1218 (2007).
https://doi.org/10.1016/j.jmb.2007.05.082

38. W. Humphrey, A. Dalke, K. Schulten. J. Mol. Graphics 14, 33-38 (1996).
https://doi.org/10.1016/0263-7855(96)00018-5

39. V. G. Pivovarenko. BBA Adv. 3, 100094 (2023).
https://doi.org/10.1016/j.bbadva.2023.100094

40. O. O. Demidov, E. S. Gladkov, A. V. Kyrychenko, A. D. Roshal. Funct. Mater. 29, 252-262 (2022).
https://doi.org/10.15407/fm29.02.252

41. Y. Bhatia, S. Mishra, V. S. Bisaria. Crit. Rev. Biotech. 22, 375-407 (2002).
https://doi.org/10.1080/07388550290789568

42. S. Tribolo, J.-G. Berrin, P. A. Kroon, M. Czjzek, N. Juge. J. Mol. Biol. 370, 964-975 (2007). https://doi.org/10.1016/j.jmb.2007.05.034

43. S. He, S. G. Withers. J. Biol. Chem. 272, 24864-24867 (1997). https://doi.org/10.1074/jbc.272.40.24864

44. J. R. Ketudat Cairns, B. Mahong, S. Baiya, J.-S. Jeon. Plant Sci. 241, 246-259 (2015). doi: 10.1016/j.plantsci.2015.10.014.
https://doi.org/10.1016/j.plantsci.2015.10.014

45. A. D. Snizhko, A. V. Kyrychenko, E. S. Gladkov. Int. J. Mol. Sci. 23, 3781 (2022).
https://doi.org/10.3390/ijms23073781

46. J.-H. Deng, J. Luo, Y.-L. Mao, S. Lai, Y.-N. Gong, D.-C. Zhong, T.-B. Lu. Sci. Adv. 6, eaax9976 (2020). doi: 10.1126/sciadv.aax9976.
https://doi.org/10.1126/sciadv.aax9976

47. S. Y. Willow, B. Xie, J. Lawrence, R. S. Eisenberg, D. D. L. Minh. Phys. Chem. Chem. Phys. 22, 12044-12057 (2020).
https://doi.org/10.1039/D0CP00376J

48. T. Sulea, E. O. Purisima. Biophys. J. 84, 2883-2896 (2003).
https://doi.org/10.1016/S0006-3495(03)70016-2

49. L. V. Chepeleva, O. O. Demidov, A. D. Snizhko, D. O. Tarasenko, A. Y. Chumak, O. O. Kolomoitsev, V. M. Kotliar, E. S. Gladkov, A. Kyrychenko, A. D. Roshal. RSC Adv. 13, 34107-34121 (2023).
https://doi.org/10.1039/D3RA06276G

Current number: