Funct. Mater. 2023; 30 (4): 561-570.

doi:https://doi.org/10.15407/fm30.04.561

Mechanical properties of ultra-high-performance concrete containing fiber and metakaolin and its predictive modeling study

Changshun Zhou1, Ziyi Bai1, Mingyong Li1, Xudong Wang1, Chenhui Jiang2

1Yuanpei College, Shaoxing University, Shaoxing 312000, China
2 School of Civil Engineering, Shaoxing University, Shaoxing 312000, China

Abstract: 

This paper investigates the influence of metakaolin (MK) and different fiber compounds on the mechanical properties of ultra-high performance concrete (UHPC). The study examines the incorporation of MK in combination with steel fibers, glass fibers, polyvinyl alcohol fibers, polypropylene fibers, and continuous basalt fibers, each at a 2% volume fraction in UHPC. The results demonstrate that the addition of MK with steel fibers yields the most favorable mechanical properties, resulting in a remarkable 28% increase in compressive strength, a 14% increase in flexural strength, and a 17.2% increase in modulus of elasticity, compared to specimens without fibers but containing 10% MK. Conversely, the inclusion of other fiber types leads to varying degrees of reduction in the mechanical properties of UHPC. This reduction is attributed to the formation of a weak interface between the fibers and the matrix, as well as fiber agglomeration. The results highlight the importance of careful fiber selection and compatibility of fibers when combining with MK to achieve optimal enhancement in UHPC performance. Based on the experimental test data, a model for predicting the elasticity modulus of UHPC as a function of time and SCMs was proposed with good reliability.

Keywords: 
ultra-high performance concrete; fiber; mechanical properties; model prediction
References: 

1. P. Zhan, J. Xu, J. Wang, J. Zuo, Z. He, J. Cleaner Production 375, 134116, (2022).
https://doi.org/10.1016/j.jclepro.2022.134116

2. P. Zhan, J. Xu, J. Wang, C. Jiang, ete, Construction and Building Materials 307, 125082 (2021).
https://doi.org/10.1016/j.conbuildmat.2021.125082

3. M.H. Akeed, S. Qaidi, H.U. Ahmed, R.H. Faraj, A.S. Mohammed, W. Emad, B.A. Tayeh, A.R.G. Azevedo, Ultra-high-performance fiber-reinforced concrete. Part I: Developments, principles, raw materials, Case Studies in Construction Materials 17, e01290 (2022).
https://doi.org/10.1016/j.cscm.2022.e01290

4. M.H. Akeed, S. Qaidi, H.U. Ahmed, R.H. Faraj, A.S. Mohammed, W. Emad, B.A. Tayeh, A.R.G. Azevedo, Ultra-high-performance fiber-reinforced concrete. Part II: Hydration and microstructure, Case Studies in Construction Materials 17,e01289 (2022),.
https://doi.org/10.1016/j.cscm.2022.e01289

5. P. Zhan, Z. He, Construction and Building Materials 201, 676, (2019)
https://doi.org/10.1016/j.conbuildmat.2018.12.209

6. J. Xu, P. Zhan, W. Zhou, J. Zuo, S.P. Shah, Z. He, Powder Technol. 419 , 18356 (2023).

7. O. Bonneau, M. Lachemi, E. Dallaire, J. Dugat, P.-C. Aitcin, Materials Journal 94(4)) 286 (1997).

8. M. Ipek, K. Yilmaz, M. Sümer, M. Saribiyik, Construction and Building Materials 25(1), 61, (2011).
https://doi.org/10.1016/j.conbuildmat.2010.06.056

9. H. Yazıcı, M.Y. Yardımcı, H. Yiğiter, S. Aydın, S. Türkel, Cem. Concr. Compos. 32(8) 639 (2010).
https://doi.org/10.1016/j.cemconcomp.2010.07.005

10. D.-Y. Yoo, J.-H. Lee, Y.-S. Yoon, Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites, CmpSt 106 (2013) 742-753.
https://doi.org/10.1016/j.compstruct.2013.07.033

11. J. Sim, C. Park, D.Y. Moon, Characteristics of basalt fiber as a strengthening material for concrete structures, Composites Part B: Engineering 36(6) (2005) 504-512.
https://doi.org/10.1016/j.compositesb.2005.02.002

12. C.G. Rigaud S, Chen J., Characterization of bending and tensile behavior of ultra-high performance concrete containing glass fibers, High Performance Fiber Reinforced Cement Composites 6, Springer, Dordrecht, 2012.
https://doi.org/10.1007/978-94-007-2436-5_45

13. J. Kinuthia, S. Wild, B. Sabir, J. Bai, Advances in cement research 12(1) , 35(2000) 15. E. Guneyisi, M. Gesoglu, A.O.M. Akoi, K. Mermerdas,Composites Part B-Engineering 56-9 (2014) 83 (2003)
https://doi.org/10.1680/adcr.2000.12.1.35

16. L. Courard, A. Darimont, M. Schouterden, F. Ferauche, X. Willem, R. Degeimbre, , Cem. Concr. Res. 33(9), 1473 (2003)
https://doi.org/10.1016/S0008-8846(03)00090-5

17. J.J. Brooks, M.A.M. Johari, Effect of metakaolin on creep and shrinkage of concrete, Cem. Concr. Compos. 23(6), 495 (2001)
https://doi.org/10.1016/S0958-9465(00)00095-0

18. A.B. Kizilkanat, N. Kabay, V. Akyüncü, S. Chowdhury, A.H. Akça, Construction and Building Materials 100, 218 (2015).
https://doi.org/10.1016/j.conbuildmat.2015.10.006

19. P. Zhan, J. Xu, J. Wang, J. Zuo, Z. He,, Cem. Concr. Compos. 137, 104924 (2023).
https://doi.org/10.1016/j.cemconcomp.2022.104924

20. S. Kakooei, H.M. Akil, M. Jamshidi, J. Rouhi,, Construction and Building Materials 27(1), 73 (2012) 21. ACI 318-11 Building code requirements for structural concrete and commentary, ACI International, Farmington Hills (Mich), 2011.
https://doi.org/10.1016/j.conbuildmat.2011.08.015

22. C. A23.3-04., Building code requirements for structural concrete and commentary, PCA notes on ACI 318-11: with design applications., Farmington Hills (Mich): ACI International, 2011.

23. E. 2-04, Design of concrete structures: Part 1-1: general rules and rules for buildings., British Standards Institution, 2004.

24. JSCE-07, Standard specification for concrete structure., JSCE No. 15, Tokyo, Japan;, 2007.

25. JCI-08, Guidelines for control of cracking of mass concrete 2008, Japan Concrete Institute, 2008.

26. N. 3101:2006, Concrete structures standard. The design of concrete structures., Wellington, New Zealand, 2006.

27. M. Shariq, J. Prasad, H. Abbas , Construction and Building Materials 41, 411 (2013)
https://doi.org/10.1016/j.conbuildmat.2012.12.035

28. M. Shariq, J. Prasad, A. Masood, Construction and Building Materials 24(8) , 1469(2010)
https://doi.org/10.1016/j.conbuildmat.2010.01.007

31. Z.P. Bazant, S. Baweja, Mater. Struct. 28(8), 488, (1995)
https://doi.org/10.1007/BF02473171

32. Z.P. Bažant, S. Baweja, Mater. Struct., 29(10), 587 (1996).
https://doi.org/10.1007/BF02485965

33. N.J. Gardner, M.J. Lockman,, ACI Mater. J. 98(2), 159, (2001).

34. C.-F.m. code, design code 1994, Thomas Telford, London, 1990.

Current number: