Funct. Mater. 2024; 31 (1): 110-118.

doi:https://doi.org/10.15407/fm31.01.110

A simple topological index for measuring nonbipartivity in nanostructures

A.V. Luzanov

STC "Institute of Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

We consider a nonbipartivity quantification problem for complex atomistic structures treated as graphs. In simple words, the bipartivity means that the corresponding graph has no odd-membered cycles. Based on preliminary results (2021) we now propose a topological index IAS. By the latter a graph spectral asymmetry is suitably transformed into a size-extensive measure of nonbipartivity. The IAS index ls tested on simple graphs, and compared with other nonbipartivity indexes. For several graph types (cycles, sunlet and wheel graphs etc.) the analytical results are obtained. The focus of our numerical computations is on large-scale nanoclusters (fullerenes with hundreds atoms and nonbipartite defects in graphene nanoclusters). It is emphasized that the size-extensivity of the given measure IAS is principal when analyzing nonbipartivity in quantitative terms.

Keywords: 
adjacency matrix, parity theorem, cycle-based graphs, vertex frustration, giant fullerenes, nanographenes.
References: 
 
 
 
1. S.N.Dorogovtsev, J.F.F.Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW, Oxford University Press, New York (2003).
https://doi.org/10.1093/acprof:oso/9780198515906.001.0001
 
2. E.Estrada, The structure of complex networks: theory and applications, Oxford University Press, Oxford (2016).
 
3. P.Holme, F.Liljeros, C.R.Edling, B.J.Kim, Phys. Rev. E, 68, 6653 (2003).
https://doi.org/10.1103/PhysRevE.68.056107
 
 
4. M.Desai, V.Rao, J. Graph Theory, 18, 181 (1994).
https://doi.org/10.1002/jgt.3190180210
 
 
5. E.Estrada, J.A.Rodríguez-Velázquez, Phys. Rev. E, 72, 056103 (2005)
https://doi.org/10.1103/PhysRevE.72.046105
 
E.Estrada, SeMA, 79, 57 (2022).
https://doi.org/10.1007/s40324-021-00275-w
 
 
6. T.Pisanski, M.Randic, Discrete Appl. Math., 158, 1936 (2010).
https://doi.org/10.1016/j.dam.2010.08.004
 
 
7. Z.Yarahmadi, A.R.Ashrafi, Appl. Math. Lett., 24, 1774 (2011).
https://doi.org/10.1016/j.aml.2011.04.022
 
 
8. S.Hayat, A.Khan, F.Yousafzai, M.Imran, Optoelectron. Adv. Mater. Rapid Commun., 9, 869 (2015).
 
9. J.Kunegis, Internet Math, 11, 201 (2015).
https://doi.org/10.1080/15427951.2014.958250
 
10. A.V.Luzanov, Kharkiv University Bulletin, Chem. Ser., 32 (55), 6 (2019)
https://doi.org/10.26565/2220-637X-2019-32-01
 
 
 
11. C.A.Coulson, G,S.Rushbrooke, Proc. Cambr. Phil. Soc., 36, 193 (1940).
https://doi.org/10.1017/S0305004100017163
 
12. A.S.Asratian, T.M.J.Denley, R.Haggkvist, Bipartite Graphs and their Applications; Cambridge University Press: Cambridge (1998).
https://doi.org/10.1017/CBO9780511984068
 
13. D.Cvetkovic′, M.Doob, H.Sachs, Spectra of Graphs - Theory and Application, Acad. Press, New York (1980).
 
14. P.V. Mieghem, Graph Spectra for Complex Networks, Cambr. University Press, Cambridge (2011).
https://doi.org/10.1017/CBO9780511921681
 
15. J.A.Pople, Rev. Mod. Phys., 71, 1267 (1999).
https://doi.org/10.1103/RevModPhys.71.1267
 
16. M.Deleuze, J.Delhalle, B.T.Pickup, J.L.Calais, Adv. Quantum. Chem., 26, 35 (1995).
https://doi.org/10.1016/S0065-3276(08)60111-2
 
17. I.Gutman, N.Trinajstić and T.Živković, Croat. Chem. Acta, 44, 501 (1972).
 
18. F.Cataldo, A.Graovac, O. Ori, The Mathematics and Topology of Fullerenes, Springer, Berlin (2011).
https://doi.org/10.1007/978-94-007-0221-9
 
19. P.Schwerdtfeger, L.Wirz, J.Avery, WIRE Comput. Mol. Sci., 5, 96 (2015).
https://doi.org/10.1002/wcms.1207
 
 
20. V.Andova, F.Kardoš, R.Škrekovski, Ars Mathematica Contemporanea, 11, 353 (2016).
https://doi.org/10.26493/1855-3974.834.b02
 
 
21. T. Došlić, Chem. Phys. Lett., 412, 336 (2005).
https://doi.org/10.1016/j.cplett.2005.07.013
 
 
T.Došlić, D.Vukičević, Discrete Appl. Math., 155, 1294 (2007).
https://doi.org/10.1016/j.dam.2006.12.003
 
 
22. L.Faria, S.Klein, M.Stehlík, SIAM J. Discrete Math., 26, 1458 (2012).
https://doi.org/10.1137/120870463
 
 
23. Z.Yarahmadi, A.R.Ashrafi, Electr.on. Notes Discrete Math., 45, 107 (2014).
https://doi.org/10.1016/j.endm.2013.11.021
 
24. http://dmccooey.com/polyhedra/index.html .
 
25. https://nanotube.msu.edu/fullerene/ .
 
26. D.J.Klein, X.Liu, J. Math. Chem., 11, 199 (1992).
https://doi.org/10.1007/BF01164204
 
27. G.E.Vaiman, G.T.Klimko, M.M.Mestechkin, Theor. Exp. Chem., 29, 143 (1993)
https://doi.org/10.1007/BF00531169
 
28. E.A.Jackson, B.D.Steinberg, M.Bancu et al, J. Am. Chem. Soc., 129, 484 (2007).
https://doi.org/10.1021/ja067487h
 
L.T.Scott, E.A.Jackson, B.D. Steinberg et al, J. Am. Chem. Soc., 134, 107 (2012).
https://doi.org/10.1021/ja209461g
 
29 M.Pinheiro Jr, D.V.V.Cardoso, A.J.A.Aquino, et al., Mol. Phys., 117, 1519 (2019).
https://doi.org/10.1080/00268976.2019.1567848
 
30. A.R.Ashrafi, M.A.Iranmanesh, Z.Yarahmadi, in Topological Modelling of Nanostructures and Extended Systems (Carbon Materials: Chemistry and Physics), ed. by A.R.Ashrafi, Springer, New York (2013), p.473.
https://doi.org/10.1007/978-94-007-6413-2_14
 
31. A.Abdollahi, S.Janbaz, Trans. Combinatorics, 3, 17 (2014)
.https://doi.org/10.22108/toc.2014.4975 .
 
 
32. J.C.Navarro-Munoz, R.López-Sandoval, M.E.García, J. Phys. A, 42, 315302 (2009).
https://doi.org/10.1088/1751-8113/42/31/315302
 
 
33. W.Florek, G.Kamieniarz, A.Marlewski, Phys. Rev. B, 100, 054434 (2019).
https://doi.org/10.1103/PhysRevB.100.054434
 

Current number: