Funct. Mater. 2024; 31 (1): 119-127.

doi:https://doi.org/10.15407/fm31.01.119

Q-factor of plasmonic resonances and field enhancement in the vicinity of spherical metallic nanoparticles

A.V. Korotun1,2, H.V. Moroz1, R.Yu. Korolkov1

1 National University Zaporizhzhia Polytechnic б, 64 Zhukovsky Str., Zaporizhzhia, 69063, Ukraine
2 G.V. Kurdyumov Institute for Metal Physics of National Academy of Sciences of Ukraine, 36 Academician Vernadsky Blvd., Kyiv, 03142, Ukraine

Abstract: 

This work investigates the optical response of spherical metal nanoparticles under scattering and absorption conditions, as well as the field enhancement in the vicinity of the nanoparticles due to the excitation of surface plasmon resonance. Relations are obtained to determine the frequency dependence of the field enhancement and the size and frequency dependence of Q-factor, taking into account all relaxation mechanisms. The radii of spherical particles of different metals, at which the surface and radiation relaxations make the same contribution into the effective relaxation rate, as well as the radii at which the effective relaxation rate will be minimal, have been estimated. It has been shown that a decrease in the linewidth of the surface plasmon resonance leads to an increase both in Q-factor and in the magnitude of the field enhancement in the vicinity of nanoparticles..

Keywords: 
spherical metallic nanoparticle, surface plasmonic resonance, Q-factor, field enhancement, effective relaxation rate, Drude model.
References: 
1. J.R. Mejía-Salazar, O.N. Oliveira, Chem. Rev., 118, 10617 (2018).
https://doi.org/10.1021/acs.chemrev.8b00359
 
2. M.B. Gawande, A. Goswami, T. Asefa et al., Chem. Soc. Rev., 44, 7540 (2015).
https://doi.org/10.1039/C5CS00343A
 
3. S. Lal, S.E. Clare, N.J. Halas, Acc. Chem. Res., 41, 1842 (2008).
https://doi.org/10.1021/ar800150g
 
4. S. Wang, H. Xu, J. Ye, Phys. Chem. Chem. Phys., 16, 12275 (2014).
https://doi.org/10.1039/C4CP00902A
 
5. N. Hadilou, A. Navid-Khoshgenab, M. Amoli-Diva et al., J. Pharm. Sci., 107, 3123 (2018).
https://doi.org/10.1016/j.xphs.2018.08.021
 
6. M. Amoli-Diva, R. Sadighi-Bonabi, K. Pourghazi et al., J. Pharm. Sci., 107, 2618 (2018).
https://doi.org/10.1016/j.xphs.2018.05.025
 
7. P. Zijlstra, J.W.M. Chong, M. Gu, Nature, 459, 410 (2009).
https://doi.org/10.1038/nature08053
 
8. S.A. Maier, M.L. Brongerma, P.G. Kik et al., Adv. Mater., 13, 1501 (2001).
https://doi.org/10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
 
9. S.A. Maier, M.L. Brongerma, P.G. Kik et al., Phys. Rev. B, 65, 193408 (2002).
https://doi.org/10.1103/PhysRevB.65.193408
 
10. S.A. Maier, P.G. Kik, H.A. Atwater et al., Nat. Mater. 2, 229 (2003).
https://doi.org/10.1038/nmat852
 
11. K. Tanabe, J. Phys. Chem. C, 112, 15721 (2008).
https://doi.org/10.1021/jp8060009
 
12. A.V. Korotun, A.O. Koval, V.V. Pogosov, Ukr. J. Phys., 66, 518 (2021).
https://doi.org/10.15407/ujpe66.6.518
 
13. K. Kneipp, H. Kneipp, I. Itzkan, R.R. et al., J. Phys. Cond. Mat., 14, R597 (2002).
https://doi.org/10.1088/0953-8984/14/18/202
 
14. F. Hubenthal, D. Blázquez Sánchez, N. Borg et al., Appl. Phys. B, 95, 351 (2009).
https://doi.org/10.1007/s00340-009-3373-7
 
15. E. Le Ru, J. Grand, N. Felidj et al., J. Phys. Chem., 112, 8117 (2008).
https://doi.org/10.1021/jp802219c
 
16. A. Bek, R. Jansen, M. Ringler et al., Nano Let., 8, 485 (2008).
https://doi.org/10.1021/nl072602n
 
17. M. Alschinger, M. Maniak, F. Stietz et al., Appl. Phys. B, 76, 771 (2003).
https://doi.org/10.1007/s00340-003-1182-y
 
18. M. Westphalen, U. Kreibig, J. Rostalski et al., Sol. Energy Mater Sol. Cells, 61, 97 (2000).
https://doi.org/10.1016/S0927-0248(99)00100-2
 
19. F. Hubenthal, Eur. J. Phys., 30, S49 (2009).
https://doi.org/10.1088/0143-0807/30/4/S05
 
20. P.K. Jain, K.S. Lee, I.H. El-Sayed et al., J. Phys. Chem., 110, 7238 (2006).
https://doi.org/10.1021/jp057170o
 
21. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos et al., Chem. Soc. Rev. 37, 1792 (2008).
https://doi.org/10.1039/b711486a
 
22. A.V. Korotun, N.I. Pavlyshche, Funct. Mater., 29, 567 (2022).
 
23. G. Baffou, R. Quidant, C. Girard, Appl. Phys. Lett. 94, 153109 (2009).
https://doi.org/10.1063/1.3116645
 
24. S. Maier, H. Atwater, J. Appl. Phys., 98, 011101 (2005).
https://doi.org/10.1063/1.1951057
 
25. P.R. West, S. Ishii, G.V. Naik et al., Las. Phot. Rev., 4, 795 (2010).
https://doi.org/10.1002/lpor.200900055
 
26. F. Wang, Y.R. Shen, Phys. Rev. Lett. 97, 206806 (2006).
https://doi.org/10.1103/PhysRevLett.97.206806
 
27. K. Kolwas, A. Derkachova, J. Quant. Spectrosc. Radiat. Transf., 114, 45 (2013).
https://doi.org/10.1016/j.jqsrt.2012.08.007
 
28. J.M. Nápoles-Duarte, M.A. Chavez-Rojo, M.E. Fuentes-Montero et al., J. Opt., 17, 065003 (2015).
https://doi.org/10.1088/2040-8978/17/6/065003
 
29. N. Pavlyshche, A. Korotun, I. Titov, V. Tretiak, Quality factor of the surface plasmonic resonance in the metallic nanodiscs. In: 2021 IEEE 12th International Conference on Electronics and Information Technologies (ELIT), (2021) p. 228.
https://doi.org/10.1109/ELIT53502.2021.9501140
 
30. E.C. Le Ru, P.G. Etchegoin, Introduction to Plasmons and Plasmonics. In Principles of Surface-Enhanced Raman Spectroscopy, Elsevier: Amsterdam, The Netherlands (2009).
https://doi.org/10.1016/B978-0-444-52779-0.00005-2
 
31. J.-E. Park, J. Kim, J.-M. Nam, Chem. Sci., 8, 4696 (2017).
https://doi.org/10.1039/C7SC01441D
 
32. P. Strobbia, E. Languirand, B.M. Cullum, Opt. Eng. 54, 100902 (2015).
https://doi.org/10.1117/1.OE.54.10.100902
 
33. M. Rycenga, C.M. Cobley, J. Zeng et al., Chem. Rev., 111, 3669 (2011).
https://doi.org/10.1021/cr100275d
 
34. A.V. Korotun, N.I. Pavlyshche, Phys. Met. Metal., 122, 941 (2021).
https://doi.org/10.1134/S0031918X21100057
 
35. M.A. Badshah, J. Ju, X. Lu et al., Sens. Act. B Chem., 274, 451 (2018).
https://doi.org/10.1016/j.snb.2018.07.163
 
36. L. Liu, J. Zhang, M.A. Badshah et al., Sci. Rep., 6, 22445 (2016).
https://doi.org/10.1038/srep22445
 
37. M.A. Badshah, J. Kim, H. Jang et al., Polymers, 10, 649 (2018).
https://doi.org/10.3390/polym10060649
 
38. U. Kreibig, M. Vollmer, Optical properties of metal clusters, Springer Verlag, Berlin (1995).
https://doi.org/10.1007/978-3-662-09109-8
 
39. A. Kawabata, R. Kubo. J. Phys. Soc. Jpn., 21, 1765 (1966).
https://doi.org/10.1143/JPSJ.21.1765
 
40. A. Wokaun, J.P. Godon, P.F. Liao, Phys. Rev. Lett., 48, 957 (1982).
https://doi.org/10.1103/PhysRevLett.48.957
 
41. T. Klar, M. Perner, S. Grosse et al., J. Phys. Rev. Lett., 80, 4249 (1998).
https://doi.org/10.1103/PhysRevLett.80.4249
 
42. C. Sonnichsen, T. Franzl, T. Wilk et al., Phys. Rev. Lett., 88, 077402 (2002).
https://doi.org/10.1103/PhysRevLett.88.077402
 
43. C. Noguez, J. Phys. Chem. C, 111, 3606 (2007).
https://doi.org/10.1021/jp066539m
 
44. M. Hu, C. Novo, A. Funston et al., J. Mater. Chem., 18, 1949 (2008).
https://doi.org/10.1039/b714759g
 
45. A.Crut, P.Maioli, N. Del Fatti, et al., Chem. Soc. Rev., 43, 3921 (2014).
https://doi.org/10.1039/c3cs60367a
 
46. C.A. Thibodeaux, V. Kulkarni, W.-S. Chang et al., J. Phys. Chem. B, 118, 14056 (2014).
https://doi.org/10.1021/jp504467j
 
47. B.N.J. Persson, Surf. Sci., 281, 153 (1993).
https://doi.org/10.1016/0039-6028(93)90865-H
 
48. E.A. Coronado, G.C.Schatz, J. Chem. Phys., 119, 3926 (2003).
https://doi.org/10.1063/1.1587686
 
49. P.M. Tomchuk, M.I. Grigorchuk, Metallofiz. Noveishie Tekhnol., 29, 623 (2007).
 
50. P. Tuersun, Optik, 127, 250 (2016).
https://doi.org/10.1016/j.ijleo.2015.10.069
 
51. N.I. Grigorchuk, P.M. Tomchuk, Phys. Rev. B, 84, 085448 (2011)
https://doi.org/10.1103/PhysRevB.84.085448
 
52. N.I. Grigorchuk, EPL, 97, 45001 (2012).
https://doi.org/10.1209/0295-5075/97/45001
 
53. N.I. Grygorchuk, Metallofiz. Noveishie Tekhnol., 38, 717 (2016).
https://doi.org/10.15407/mfint.38.06.0717
 
54. N.I. Grigorchuk J. Phys. Stud., 20, 1701-1 (2016).
https://doi.org/10.30970/jps.20.1701
 
55. N.A. Smirnova, M.S. Maniuk, A.V. Korotun et al., Phys. Chem. of Sol. St., 24, 181 (2023).
https://doi.org/10.15330/pcss.24.1.181-189
 
56. A.V. Korotun, A.A. Koval′, V.I. Reva, J. Appl. Spectrosc., 86, 606 (2019).
https://doi.org/10.1007/s10812-019-00866-6
 
 
 

Current number: