Funct. Mater. 2024; 31 (1): 128-139.

doi:https://doi.org/10.15407/fm31.01.128

Formation of multifunctional perovskite-like layered oxide materials using precursors based on coordinated nitrates of alkali and rare-earth metals

O.G. Dryuchko, V.V. Soloviev, N.V. Bunyakina, B.R. Boriak, O.E. Illiash

National University "Yuri Kondratyuk Poltava Polytechnic", 24 Pershotravnevy prospect, 36011, Poltava, Ukraine

Abstract: 

The results of the research summarize important information about alkaline coordination nitrates of rare earth elements of the cerium subgroup. They are used as precursors for promising modern multifunctional materials. Using a complex of physicochemical methods, the conditions of their formation and existence, the nature of chemical bonding, composition, structure, coordination polyhedra Ln, and ligand coordination type have been elucidated. The existence of a few isotypic series has been revealed based on the stoichiometry of the composition, structure, and characteristic properties. The obtained primary information is the basis for detecting, identifying, and controlling the phase state of processing objects in preparatory stages. It is important at the stages of forming transformational technological schemes, selecting criteria for the compatibility of constituent ingredients, and clarifying the stages and conditions for their implementation. The range of innovative applications includes the formation of monolayer and layered nanostructured oxide compositions of lanthanides and transition elements with catalytic and photocatalytic activity, as well as self-cleaning coatings with hydrophilic properties. The proposed methods include various combined activation of the processes under study and controlled changes in the properties of the resulting target products. The established technological-functional dependencies were assessed. To enhance the photocatalytic activity of coatings based on highly dispersed anatase TiO2, a technique has been proposed for the chemical modification of oxidation centers in their surface layer, which involves heat treatment in contact with the melt of alkaline coordination lanthanide nitrates. An effective photocatalytic decomposition of organic substrate vapors is shown using ethanol as an example.

Keywords: 
alkaline coordination nitrates of lanthanides, formation conditions, crystal structure of compounds, characteristic properties, transformations with physical activation
References: 
1. Mazurenko, E.A., Gerasemchuk, A.I., Trunova, E.K. et al. Ukr. chem. journal, 70(7), 32 (2004).
 
2. Zhang, Q., Schmidt, N., Lan, J. et al. Chem. Com., 50, 5593 (2014). [Google Scholar]
https://doi.org/10.1039/C4CC00335G
 
3. Ishchuk V.M., Cherginets V.L., Demirskaya O.V. et al. Ferroelectrics, 298, 135 (2004).
https://doi.org/10.1080/00150190490423354
 
4. Ok K.-M., Kim K.-L., Kim T,-W., Kim D.-H. Journal of the Korean Crystal Growth and Crystal Technology. 2013, vol. 23(1), 37(2013).
 
5. Gavrilenko, O.M., Pashkova, O.V., Bіlous, A.G. Ukr. chem. journal, 71(8), 73 (2005).
 
6. Fortal′nova, E.A., Gavrilenko, O.N., Belous, A.G. et al. Ros. chem. journal, LII(5), 43 (2008). [Google Scholar]
 
7. Pat. RU 2440292 S 2, C 01 B 3/18 Method for obtaining perovskites. Yakovleva I.S., Isupova L.A. (RU) - publ. 2012. [Google Scholar]
 
8. Schaak, R.E., Mallouk, T.E. Chemistry of Materials, 14(4), 1455 (2002).
https://doi.org/10.1021/cm010689m
 
9. Rodionov, I.A., Siljukov, O.I., Zvereva, I.A. Journal of General Chemistry, 4, 548 (2012).
 
10. Drjuchko, O.G., Storozhenko, D.O., Bunjakіna, N.V. et al. Bulletin of the NTU "KhPI". Series: Chemistry, Chemical Technology and Ecology, 39(1315), 3 (2018).
https://doi.org/10.20998/2079-0821.2018.39.01
 
11. Drjuchko, O., Storozhenko, D., Vigdorchik, A. et al. Molecular Crystals and Liquid Crystals, 672(10), 199 (2018).
https://doi.org/10.1080/15421406.2018.1542066
 
12. Pat. CN 102382490 A. Preparation and application of a hydrophilic self-cleaning coating with photocatalytic activity. Zhang Xianhong, Zhang Anji, Zhang Haiyin et al. (CN) - publ. 2012. [Google Scholar]
 
13. Varma, A., Mukasyan, A.S., Rogachev, A.S. et al. American Chemical Society. Chem. Rev., 116, 14493 (2016).
https://doi.org/10.1021/acs.chemrev.6b00279
 
14. Seeber, A. et al. Mater.Res., 13(1), 99 (2010).
https://doi.org/10.1590/S1516-14392010000100020
 
15. Fujishima, A., Zhang, X., Tryk, D.A. Surf. Sci. Rep., 63(12), 515 (2008).
https://doi.org/10.1016/j.surfrep.2008.10.001
 
16. Kudrenko, E. O., Shmyt′ko, Y. M., Strukova, H. K. Fyzyka tverdoho tela, 50(5), 924 (2008).
 
17. Rodionov, I.A., Zvereva, І.А. Russ. Chem. Rev., 85 (3), 248 (2016).
https://doi.org/10.1070/RCR4547
 
18. Lagaly, G. Solid State Ionics, 22, 43 (1986). .
https://doi.org/10.1016/0167-2738(86)90057-3
 
19. Machida, M., Miyazaki, K., Matsushima, S. et al. J. Mater. Chem., 13(6), 1433 (2003).
https://doi.org/10.1039/b301938c
 
20. Silyukov, O., Chislov, V., Burovikhina, A. et al. J. Therm. Anal. Calorim., 110(1), 187 (2012).
https://doi.org/10.1007/s10973-012-2198-5
 
21. Gopalakrishnan, J., Sivakumar, T., Ramesha, K. et al. Chem. Phys., 9, 6237 (2000).
https://doi.org/10.1021/ja9914644
 
22. Schaak, R. E., Mallouk, T. E. J. Solid State Chem., 161(2), 225 (2001).
https://doi.org/10.1006/jssc.2001.9303
 
23. Zhu, W. J., Feng, H. H., Hor, P. H. Mater. Res. Bull., 31(1), 107 (1996).
https://doi.org/10.1016/0025-5408(95)00167-0
 
24. Toda, M., Watanabe, K., Sato, J. Mater. Res., 31(11), 1427 (1996).
https://doi.org/10.1016/0025-5408(96)00135-3
 
25. Richard, M., Brohan, L. and Tournoux, M. J. Solid State Chem., 112, 345 (1994).
https://doi.org/10.1006/jssc.1994.1315
 
26. Gopalakrishnan, J., Bhat, V. Inorg. Chem., 26(26), 4299 (1987).
https://doi.org/10.1021/ic00273a001
 
27. Utkina, T., Chislov, M., Silyukov, O. et al. Journal of Thermal Analysis and Calorimetry, 125, 281 (2016).
https://doi.org/10.1007/s10973-016-5377-y
 
28. Pat. RU 2478413 C1 IPC B01D 21/06 B01J 21/08 B01J 21/18 B01J 23/38 B01D 53/86 C02F 1/30. Composite photocatalyst for water and air purification. Kozlov, D.V., Selishchev, D.S.,Kolinko, P.A. et al. (RU) - publ. 2013.[Google Scholar]
 
29. Kato, M., Kajita, T., Hanakago, R. et al. Phys. C Supercond., 445, P. 26 (2006).
https://doi.org/10.1016/j.physc.2006.03.070
 
30. Thangadurai, V., Subbanna, G.N., Gopalakrishnan, J. J. Chem. Commun., 7(c), 1299 (1998).
https://doi.org/10.1039/a802644k
 
31. Ranmohotti, K.G.S., Josepha, E., Choi, J. et al. Adv. Mater., 23(4), 442 (2011).
https://doi.org/10.1002/adma.201002274
 
32. Sivakumar, T., Lofland, S., Ramanujachary, K. et al. J. Solid State Chem., 177(7), 2635 (2004).
https://doi.org/10.1016/j.jssc.2004.03.030
 
33. Rodionov, I.A., Silyukov, O.I., Utkina, T.D. Russian Journal of General Chemistry, 82, 1191 (2012).
https://doi.org/10.1134/S1070363212070018
 
34. Anosov, V.Ya., Ozerova, M.I., Fialkov, Yu.Ya. Basics of Physical and Chemical Analysis. Мoscov, Nauka Publ. - 503 p. (1976).
 
35. Goroshchenko, Ya.G. Physical and Chemical Analysis of homogenous and heterogenous systems. Kiev, Naukova dumka Publ. - 490 p. (1978).
 
36. Busev, A.I., Tiptsova, V.G., Ivanov, V.M. Management on analytical chemistry of rare elements. Moscov. Chemistry Publ. - 432 p. (1978).
 
37. Kreshkov A.P. Fundamentals of Analytical Chemistry. Quantitative analysis. Moscov, Chemistry Publ., book. 2. - 480 p. (1976).
 
38. Storozhenko, D.O., Dryuchko, O.G., Bunyakina, N.V., Ivanytska, I.O. Innovations in Corrosion and Materials Science. 5(2). 80 (2015).
https://doi.org/10.2174/2352094905666151006011428
 
39. Vigdorchik, A.G., Malinovskiy, Yu.А., Dryuchko, А.G. et al. Crystallography, 37(4). 882 (1992).
 
40. Eriksson, B., Larrson, L.O., Niinisto, L. et al. Acta Chem. Scand., 34(8). 567 (1992).
 
41. Meille, V. Appl. Catal. 315. 1 (2006).
https://doi.org/10.1016/j.apcata.2006.08.031
 
42. Avila, P., Montes, M., Miró, E.E. Chem. Eng. J. 109, 11 (2005).
https://doi.org/10.1016/j.cej.2005.02.025
 
43. Cromer, D.T., Herrington, K. Journal American Chemical. Society. 77(18). 4708 (1955).-1
https://doi.org/10.1021/ja01623a004
 
 
 

Current number: