Funct. Mater. 2024; 31 (1): 13-17.

doi:https://doi.org/10.15407/fm31.01.13

Exciton absorption spectrum of thin films of (CsxK1-x)2CuCl3 solid solutions

E.N. Kovalenko1, O.N. Yunakova2, N.N. Yunakov2

1Kharkov National University of Radio Electronics,14, Nauki Ave., Kharkiv 61166, Ukraine,
2Kharkiv National University, 4, Svobody Sq., Kharkiv 61022, Ukraine

Abstract: 

The absorption spectra of thin films of (CsxK1-x)2CuCl3 0≤х≤1 (T=90K) solid solutions in the spectral range 2–6 eV were studied. According to the analysis of the spectra, the formation of two types of compounds was observed and studied: 1) compounds at x=0 and in the range of 0.4≤х≤1 which are isostructural to Cs2CuCl3 and K2CuCl3; 2) compounds at x=0.2 which are isostructural to CsCu2Cl3. The excitonic spectra of (CsxK1-x)2CuCl3 0≤х≤1compounds are caused by transitions in the Cu+ ion. The linear concentration dependences of the spectral position of exciton bands in both types of compounds confirm the localization of excitons in sublattices containing Cu+ ions.

Keywords: 
thin films, absorption spectra, excitons.
References: 
1. K. Fatima, M.I. Haider, A. Bashir, Z. Akhter, M. Sultan, Physica E: Low-Dimensional Systems and Nanostructures, 142, 115265 ( 2022).
https://doi.org/10.1016/j.physe.2022.115265
 
2. P. Gong, F. Liang, L. Kang, Z. Lin, Chemistry of Materials, 34, 11, 5301(2022).
https://doi.org/10.1021/acs.chemmater.2c01051
 
3. A.S. Sadhu, Y.-M. Huang, L.-Y. Chen,H.-C. Kuo, C.-C.Lin, Nanomaterials, 12, 6, 985 (2022).
https://doi.org/10.3390/nano12060985
 
4. W. Gao, L. Yin, J.-H. Yuan, K.-H. Xue, G. Niu, B. Yang, Q. Hu, X. Liu, J. Tang, Organic Electronics,86, 105903(2020).
https://doi.org/10.1016/j.orgel.2020.105903
 
5. R. Roccanova, A. Yangui, H. Nhalil, H. Shi, M.-H. Du, B. Saparov, ACS Appl. Electron. Mater., 1, 3, 269 (2019).
https://doi.org/10.1021/acsaelm.9b00015
 
6. S. Hull, P. Berastegui, J. Solid State Chem., 177, 9, 3156 (2004).
https://doi.org/10.1016/j.jssc.2004.05.004
 
7. E.N. Kovalenko , O. N. Yunakova, N.N. Yunakov, Low Temperature Physics, 49, No. 10, 1190 (2023).
https://doi.org/10.1063/10.0020874
 
8. G. Meier, Z. Anorg. Allg. Chem., 515, 127 (1984).
https://doi.org/10.1002/zaac.19845150814
 
9. E.N. Kovalenko , O. N. Yunakova, N.N. Yunakov, Low Temperature Physics, 47, No.5, 462 (2021).
https://doi.org/10.1063/10.0004238
 
10. K. Edamatsu, T. Nanba, M. Ikezawa, Journal of Physical Society of Japan 58, 301 (1989).
https://doi.org/10.1143/JPSJ.58.301
 
11. V.K. Miloslavsky, E.N. Kovalenko, O.N. Yunakova, Opt. and Spectrosc., 84, 6, 940 (1998).
 

Current number: