Funct. Mater. 2024; 31 (1): 140-145.

doi:https://doi.org/10.15407/fm31.01.140

Efficiency of light collection in the combined detector NaI(Tl)//CsI(Na)

D.I.Zosym1, I.K.Kyrychenko2

1Institute of Scintillation Materials of the National Academy of Sciences of Ukraine, etc. Nauky 60, 61072, Kharkiv, Ukraine
2Kharkiv National Automobile and Highway University, 25 Yaroslava Mudroho Street, 61002, Kharkiv, Ukraine

Abstract: 

A combined NaI(Tl)//CsI(Na) detector is an assembly of two scintillators, one of which is the "fast" NaI(Tl) (τf=230 ns), and the other is the "slow" CsI(Na) (τs=630 ns). Both crystals are cylindrical with a diameter of 19 cm. The NaI(Tl) scintillator has a thickness of 0.35 cm, while CsI(Na) has a thickness of 4 cm. For this scintillator configuration, a light collection method based on the dielectric permeability dependence of NaI(Tl) on the concentration of the activating impurity has been tested. The results of measurements of detectors using this principle of light collection indicate that the energy resolution of the 59.54 keV gamma line is in the range of 11-12%, and the non-uniformity of the light yield distribution over the surface of the input window is approximately 3%. This principle of light collection requires polished crystal surfaces and the use of an external light reflector with a diffusive light reflection characteristic. The polished state of the scintillator surfaces is a necessary condition for ensuring the stability of the characteristics of combined detectors during their operation.

Keywords: 
combined detector, phoswich detectors, non-uniformity of light yield distribution, grinding
References: 
1. D. H. Wilkinson. Rev. Sci. Instr. 414, 23, (1952)
https://doi.org/10.1063/1.1746324
 
2. L. E. Peterson. Annual Review of Astronomy and Astrophysics. 423, 13, (1975)
https://doi.org/10.1146/annurev.aa.13.090175.002231
 
3. F. Frontera, E. Costa, D. dal Fiume, et all., Astronomy & Astrophysics Supplement Series. 357, 122, (1997)
https://doi.org/10.1051/aas:1997140
 
4. R.E. Rothschild, P.R. Blanco, D.E. Gruber et all. Astrophys. J. 496, 538, (1998)
https://doi.org/10.1086/305377
 
5. XuFang Li , CongZhan Liu, Zhi Chang et al. Journal of High Energy Astrophysics, 24, 6, (2019)
 
6. Y. Dong, B. Wu, Y. Li, Y. Zhang, S. Zhang, Sci. Ch. Phys. 53, 40, (2010)
https://doi.org/10.1007/s11433-010-0011-7
 
7. Bernardini, M.G., Cordier, B., Wei, J. on behalf of the SVOM Collaboration. The SVOM Mission. Galaxies. 9, 113,(2021). https:// doi.org/10.3390/galaxies9040113
https://doi.org/10.3390/galaxies9040113
 
8. Hink P., Pelling P., and Rothschild R. EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy III, SPIE Proceedings, ed: O.H.V. Sigmund, 1743, 140, (1992)
 
9. http://www.rjchase.com/ptfe_handbook.pdf
 
10. Gorileckij, V. I., Grinev, B. V. and Zaslavskij, B. G. Rost kristallov [Crystal Growth]. Kharkov, AKTA Publ. 535 p., (2002)
 
11. http://www.sugan.com.ua
 
12. S. T. Pantelides. Crystals. Phys. Rev. Lett. 35(4), 250, (1975)
https://doi.org/10.1103/PhysRevLett.35.250
 
13. Hong Li, Jianfeng Ji, Hua Feng, Zhi Zhang, Dong Han. A Large Area LaBr3/NaI Phoswich for Hard X-ray Astronomy. arXiv:1112.5815 [astro-ph.IM].
 
 
 

Current number: