Funct. Mater. 2024; 31 (1): 39-43.

doi:https://doi.org/10.15407/fm31.01.39

Study of the microstructure and mechanical properties of a TiCu-based alloy produced by vacuum casting with rapid cooling

Xianzhang Feng1, Haihang Wang1, Xinfang Zhang2, Junwei Cheng2,Tao Hou3

1School of Aeronautical Engineering, Zhengzhou University of Aeronautics, Zhengzhou, Henan, P.R. China, 450046
2School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, Henan, P.R. China, 4500463Hebi City Special Equipment Inspection Institute, Henan, P.R. China, 458030

Abstract: 

The microstructure of the TiCu alloy obtained by solidification by vacuum casting into a copper mold was studied for observation and imaging of tissues. Research was carried out using optical microscopy, scanning electron microscopy and transmission electron microscopy. Studies have shown that upon rapid cooling of TiCu-based alloys, martensitic structures are formed, which are embedded in γ-TiCu and TiCu. They effectively counteract local shear stress, which leads to rotational diffusion and an increase in shear bands. This prevents the propagation of microcracks caused by excessive local stress during deformation. Research results show that it can effectively improve the microstructure and mechanical properties of alloys based on TiCu.

Keywords: 
TiCu based alloy, rapid solidification, rapid cooling, microstructure, martensite.
References: 
1. X. Zheng, C.C. Engler-Pinto, X. Su, H. Cui, W. Wen , Materials Science and Engineering A, 560, 792, 2013.
https://doi.org/10.1016/j.msea.2012.10.037
 
2. Y.H. Kim, T.K. Ryou, H.J. Choi et al. Journal of Material Processing Technology, 123. 270, 2002,
https://doi.org/10.1016/S0924-0136(02)00087-0
 
3. Beck T,Henne I,Lohe D., Materials Science and Engineering A, 483, 382, 2008.
https://doi.org/10.1016/j.msea.2006.09.139
 
4. DHOUHA M,HADDAR N,KOESTER A,et al., .Engineering Failure Analysis, 45, 85. 2014.
https://doi.org/10.1016/j.engfailanal.2014.06.007
 
5. Liu W C. Radhakrishnan B, Materials Letters, 64(16), 1829, 2010.
https://doi.org/10.1016/j.matlet.2010.05.046
 
6. Beck T,Lohe D,Luft J, et al., Materials Science and Engineering A, 468, 184. 2007
https://doi.org/10.1016/j.msea.2006.05.177
 
7. Ola Jensrud, Ketill Pedersen. ,. J. Material Processing Technology, 80-81,156, 1998.
https://doi.org/10.1016/S0924-0136(98)00219-2
 
8. Tangen S, Sjlstad K. Furu T. et al. Metallurgical & Materials Transactions A,41(11),: 2970, 2010.
https://doi.org/10.1007/s11661-010-0265-8
 
9. Liu W,Ma M,Yang F. , Metallurgical&MaterialsTransactions A,44(6),2857, 2013.
https://doi.org/10.1007/s11661-012-1601-y
 
10. Dubey S, Srivatsan T S, SocoveloW O., International Journal of Fatigue, 22(2),161, 2000
https://doi.org/10.1016/S0142-1123(99)00114-0
 
11. Zhao Yongqing, Alloys.Materials China, 29(5), 1-8.
 
12. Ma Z Y, Mishra R S, Tjong S C. Composite leta materialia, 50(17), 4293, 2002
https://doi.org/10.1016/S1359-6454(02)00261-6
 
13. Shang L M,Chen X P,Li X G,et al. . Transactions of Materials & Heat Treatment, 36(6),78, 2015
 
14. Zheng X. Engler-Pinto Jr C C. Su X.et al. Modeling of Fatigue Damage under Superimposed High-Cycle.
 
15. Stanzl-Tschegg S E,Meischel M. Arcari A,et al. International Journal of Fatigue,,91,352, 2016.
https://doi.org/10.1016/j.ijfatigue.2015.10.022
 
16. HU Qiyao,ZHAO Haidong, LI Fangdong. J. Materials Science & Engineering:A,680, 270, 2017,
https://doi.org/10.1016/j.msea.2016.10.090
 
17. ZUO P P,WU X C,ZENG Y,et al.Fracture of Engineering Materials Structures, 41(1),59 2018.
 
18. LU Tiwen. SCUDION S. CHEN Materials Science & Engineering A,,726,126, 2018.
https://doi.org/10.1016/j.msea.2018.04.080
 
19. JIA Xiaoshuai,ZUO Xunwei,CHEN Nai,HUANG Jian,TANG Xinhua, RONG Yonghua. Acta Metallurgica Sinica. 49(1), 35, 2013.
https://doi.org/10.3724/SP.J.1037.2012.00351

Current number: