Funct. Mater. 2024; 31 (1): 51-60.

doi:https://doi.org/10.15407/fm31.01.51

Polyetherguanidines and their microbial degradation

M.Y. Vortman1, Zh.P. Kopteva2, L.O. Bilyavska2, G.E. Kopteva2, A.M. Pylypenko1, V.M. Lemeshko1, V.V. Shevchenko1

1Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48, Kharkiv Highway, 02160, Kyiv, Ukraine
2Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154 Zabolotny Str., 03143, Kyiv, Ukraine

Abstract: 

Film-forming polyetherguanidines with a three-dimensional structure were obtained. The microbial degradation of polyetherguanidine and its compositions with alkyl substituted guanidinium bromide, as well as chemical and physical-mechanical properties of the synthesized materials under the influence of hydrocarbon-oxidizing bacteria (HOB) were studied. Scanning electron microscopy has been used to demonstrate the formation of a biofilm of HOB on the surface of the studied materials. Guanidinium polymers inhibited catalase and lipolytic activity by 1.3-3.7 times compared to the control. According to the data obtained, the destruction of guanidinium polymers was from 2.2% to 6.0%. The physical and mechanical properties of the materials, such as tensile strength and relative elongation, remained practically unchanged over 90 days of the experiment. These results are consistent with the results of infrared spectroscopy, according to which the composition of the materials under study has not changed chemically.The thermogravimetric analysis showed that the initial decomposition temperature of the studied materials did not decrease, i.e., the polymeric materials did not lose their properties after exposure to the HOB. Based on the data on the destruction of polymeric materials, it can be assumed that under the influence of bacteria, minor surface biodegradation could occur on the surface of these polymers. Thus, the tested polyetherguanidine-based material is promising for protecting various structures from biological damage.

Keywords: 
polyetherguanidines, microbial degradation, hydrocarbon-oxidizing bacteria, enzymes, IR spectroscopy, thermogravimetry, tensile strength
References: 
1. H.N. Jung , T. Zerin , B. Podder., H.Y. Song, Toxicol. In Vitro 28, 682, (2015)
https://doi.org/10.1016/j.tiv.2014.02.004
 
2. R .Kitamaki, K .Shirai, K.Sugino Bull. Chem. Soc. Japan, 41,1461, (1968)
https://doi.org/10.1246/bcsj.41.1461
 
3. M.Ya .Vortman, Yu.B.Pysmenna, A.I.Chuenko et.all., Mikrobiol. Z., 82, 6,54, (2020)
 

4. M.Yа.Vortman, Zh.P.Kopteva, A.E. Kopteva, et.all. Functionаl Materials, 29,1,107, (2022)

https://doi.org/10.15407/fm29.01.107

 
5. S. Divjalakshmi, A.Subhashini Journal of Environmental Science Toxicology and Food Technology, 10, 1, (2016)
 
6. M. Kordel, B.Hofmann, B.Schomann, D.Schom­burg, R. Schmid, Journal Bacteriol, , 5,4836, (1991)
https://doi.org/10.1128/jb.173.15.4836-4841.1991
 
7. M.H.Hadwan, M.N. Abed, Data in Brief., 6, 194,( 2016)
https://doi.org/10.1016/j.dib.2015.12.012
 
8. Handbook of Thermal Analysis, T. Hatakeyama, Liu Zhenhai. Ibaraki, Japan.(1999)
 
9. D.R.Abdulina, M.Ya.,Vortman, G.O. Iutynska, L.M.Purish, Zh.P.Kopteva, G.E. Kopteva, V.M.Lemeshko, V.V.Shevchenko Materials Sciense, 58, 5, 579, (2023)
https://doi.org/10.1007/s11003-023-00701-6
 
10. J.H.Priester, A.M.Horst, L.C. Van De Werfhorst et.all, Microbiol. Methods, 68, 3. 577, (2007)
https://doi.org/10.1016/j.mimet.2006.10.018
 
11. Microbial corrosion of underground structures K. I. Andreyuk, I. P. Kozlova, Zh. P. Kopteva et.all. Kiev: "Naukova dumka",2005
 
12. Zh.P.Kopteva, V.V. Zanina. Microbiol. Z.,70, 1,71, (2008)
 
13. Zh.P.Kopteva, M.Ya .Vortman, G.O. Iutynska, G.E. Kopteva, et.all., Physical and Chemical Mechanics of Materials, 59, 4 .108,( 2023)
 
14. L.Albinas, L.Loreta, P.Dalia Internat. Biodeterior and Biodegrad., 52, 233,(2003)
 
15. J.Kyrikov , E.Briassoulis, J. Polymer Engg, 15, 1501,(2007)
https://doi.org/10.2167/jost722.0
 
16. S.K. Mohan, T. Srivastava , J.Biochem Tech., 2, 4,210, (2010).

Current number: