Funct. Mater. 2024; 31 (1): 9-12.

doi:https://doi.org/10.15407/fm31.01.9

Pulse-shape discrimination capability of organic composite scintillators with different grain size

I. Khromiuk, V. Alekseev, A. Krech, Ye. Martynenko, S. Minenko, O. Tarasenko

Institute for Scintillation Materials of National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

The study of the pulse shape discrimination (PSD) capability for organic composite scintillators with a diameter of 20 mm and a thickness of 5 mm was carried out. The fractions of grains 0.1–0.3, 0.3–0.5, 0.5–1.0, 1.0–1.5, 1.5–2.0, 2.0–2.5 mm of trans-stilbene and p-terphenyl were used to obtain the samples. It was shown that these objects retain the dependence of their scintillation properties, namely, the figure-of-merit (FOM) value for stilbene is higher than for p-terphenyl. Also the composite scintillators show themselves as promising detectors, since their PSD capability is not critically lower than that of single crystal of appropriate scintillators. For the first time it was shown that for the fractions of grains under investigation, the FOM values practically do not change with increasing grain size, which indicates the same processes of transport and recombination of triplet excitons in them.

Keywords: 
organic composite scintillators, triplet excitons, pulse shape discrimination, figure-of-merit.
References: 
1. ICRP Publication 103, The 2007 Recommendations of the international commission on radiological protection, Ann. ICRP, 37, 332 (2007).
 
2. Birks J.B. The theory and practice of scintillation counting, London: Pergamon press, 1967; 662 p.
 
3. P.N. Zhmurin, V.N. Lebedev, V.D. Titskaya et al., Nucl. Instrum. Meth. A., 761, 92 (2014). 
https://doi.org/10.1016/j.nima.2014.05.084
 
4. G. Hull, N.P. Zaitseva, N.J. Cherepy et al., IEEE T. Nucl. Sci., 56, 899 (2009). 
https://doi.org/10.1109/TNS.2009.2015944
 
5. N.P. Zaitseva, A.M. Glenn, A.N. Mabe et al., Nucl. Instrum. Meth. A, 889, 97 (2018). 
https://doi.org/10.1016/j.nima.2018.01.093
 
6. F.D. Brooks, Nucl. Instrum. Meth., 162, 477 (1979). https://doi.org/10.1016/0029-554X(79)90729-8.
https://doi.org/10.1016/0029-554X(79)90729-8
 
7. T. Yanagida, K. Watanabe, Y. Fujimoto, Nucl. Instrum. Meth., 784, 111 (2015). https://doi.org/10.1016/j.nima.2014.12.031.
https://doi.org/10.1016/j.nima.2014.12.031
 
8. S.K. Lee, Y. H. Cho, B. H. Kang et al., J. Nucl. Sci. Technol., 1, 292 (2011). http://dx.doi.org/10.15669/pnst.1.292.
https://doi.org/10.15669/pnst.1.292
 
9. S.K. Lee, J.B. Son, K.H. Jo et al., J. Nucl. Sci. Technol., 51, 37 (2014). 
https://doi.org/10.1080/00223131.2014.845539

10. J. Iwanowska, L. Swiderski, M. Moszynski et al., J. Instrum., 6, P07007 (2011).
https://doi.org/10.1088/1748-0221/6/07/P07007.

11. N.Z. Galunov, I.F. Khromiuk, O.A. Tarasenko, Nucl. Instrum. Meth. A, 949, 162870 (2020). https://doi.org/10.1016/j.nima.2019.162870.

12. F.D. Brooks, Nucl. Instrum. Meth. 162, 477 (1979).
https://doi.org/10.1016/0029-554X(79)90729-8.

13. M. Flaska, S.A. Pozzi. Nucl. Instr. Meth. A, 577, 654–663 (2007).
https://doi.org/10.1016/j.nima.2007.04.141

Current number: