Funct. Mater. 2024; 31 (1): 91-95.

doi:https://doi.org/10.15407/fm31.01.91

The dynamical matrix for graphene

G. Myagmarsuren1, Ts. Amartaivan1, Ts.Gantulga1, L.Enkhtor1, I.Pritula2

1Department of Physics, National University of Mongolia, School of Science and Arts, 14201 Ikh Surguulin gudamj 1, Ulaanbaatar, Mongolia.
2Institute for Single Crystals NASU, 60 Nauki ave., 61001 Kharkov, Ukraine

Abstract: 

In frame of De Launay model, the expression for elements of dynamical matrix of graphene have been deduced with accounting interatomic forces on the first six neighbor atoms. The calculation of phonon dispersion of graphene in ГK and ГM directions is done via known values of radial and tangential force constants on the first five neighbor atoms. Calculated phonon dispersion is in satisfactory agreement with experimental phonon spectra of graphite measured by another authors. In long wave approximation, the equations for estimation of elastic constants of graphene have been obtained from the expressions of elements of dynamical matrix.

Keywords: 
graphene, dynamical matrix, phonon dispersion, elastic constants.
References: 
1. A.Charlier, E.McRae, M.-F.Charlier, A.Spire, S.Forster, Phys. Rev.B, 57, 6689(1998).
https://doi.org/10.1103/PhysRevB.57.6689
 
2. L.A.Falcovsky, Phys. Lett. A, 372, 5189 (2008).
https://doi.org/10.1016/j.physleta.2008.05.085
 
3. D.Gray, A.McCaughan, B. Mookerji, Phys. for Sol. Stat. Appl. 1-8 (2009).
 
4. M. Mohr, J. Maultzsch, E. Dobardzic et al., Phys. Rev. B, 76, 035439-1-7 (2007).
https://doi.org/10.1103/PhysRevB.76.035439
 
5. O.L.Blakslee, D.G.Proctor, E.J.Seldin et al., Jour. Appl. Phys., 41, 3373 (1970).
https://doi.org/10.1063/1.1659428
 
6. J. De Launay, Sol. Stat. Phys., 2, 219 (1956).

Current number: