Funct. Mater. 2024; 31 (2): 153-162.

doi:https://doi.org/10.15407/fm31.02.153

Preparation and characterization of 6LiF/ZnS(Ag) scintillator with varying granulometry

V. Tarasov1, O. Zelenskaya1, O. Shpilinskaja2, L. Trefilova3, L. Andruschenko3, L. Borysova3, Yu. Hapon3

1Institute for Scintillation Materials of NASU, 60, Nauky Avenue, Kharkiv, Ukraine, 61023
2National Aerospace University "Kharkiv Aviation Institute", 17, Chkalov str., Kharkiv, Ukraine, 61070
3National University of Civil Protection of Ukraine, 94, Chernyshevska str., Kharkiv, Ukraine, 61023

Abstract: 

The effect of the dispersity of 6LiF and ZnS(Ag) powders on the performance of a 6LiF/ZnS(Ag) composite scintillator with a mass ratio of 6LiF/ZnS(Ag)/binder component mass ratio of 1 6LiF:4ZnS(Ag):2.1 binder was studied. It has been established that for a single-layer 6LiF/Zn S(Ag) composite with a thickness of 0.2 mm, the best light output and thermal neutron detection efficiency (~29%) is provided at ratios of 1 to (10.3-13.3) for 6LiF and ZnS(Ag) grain size and (550-1150) to 1 for their number of grains respectively. Outside these optimal ratios, the detection efficiency drops to 20-22%. When the ratio of the number of the 6LiF and ZnS(Ag) grains is below optimal, the detection efficiency decreases due to a decrease in the probability of neutron capture by a reduced number of 6Li nuclei. A significant excess of 6LiF increases both the neutron capture probability and the absorption probability of the charged products of the neutron capture reaction in the same 6LiF converter, without causing scintillations in ZnS(Ag). It has been shown that a scintillation detector constructed from five 6LiF/ZnS(Ag) layers, alternating with four organic glass plates acting as light guides ensures a thermal neutron detection efficiency of 75%.

Keywords: 
neutron detector, <sup>6</sup>LiF/ZnS(Ag), converter, scintillator, detection efficiency, light yield
References: 
1. G. F. Knoll, Radiation Detection and Measurement, Wiley & Sons, New York (2000).
 
2. P. Peerani, A. Tomanin, S. Pozzi et. al., Nucl. Instr. and Meth. A, 696, 110 (2012).
https://doi.org/10.1016/j.nima.2012.07.025
 
3. R.T. Kouzes, A.T. Lintereur, E.R. Siciliano, Nucl. Instr. and Meth. A, 784, 172 (2015).
https://doi.org/10.1016/j.nima.2014.10.046
 
4. T. Brückel. Applications of Neutron Scattering - an Overview. Forschungszentrum Jülich GmbH, Germany (2012).
 
5. S. C. Vogel, Hindawi Publishing Corporation ISRN Materials Science, Article ID 302408, 24 pages (2013).
https://doi.org/10.1155/2013/302408
 
6. R. H. Bossi, High Speed Motion Neutron Radiography. Ph.D. Thesis, Oregon State University (1976).
 
7. J. Rhodes, M.W. Johnson, in: Proc. Int. Conf. on Inorg. Scintillators and their Applications "SCINT′95", Delft, The Netherlands (1996), p. 73.
 
8. C.W.E. van Eijk, A. Bessiere, P. Dorenbos, Nucl. Instr. and Meth. A, 529, 260 (2004).
https://doi.org/10.1016/j.nima.2004.04.163
 
9. T. Kojima, M. Katagiri, N. Tsutsui et al., Nucl. Instr. and Meth. A, 529, 325 (2004).
https://doi.org/10.1016/j.nima.2004.05.005
 
10. C.W.E. van Eijk, Nucl. Instr. and Meth. A, 460, 1 (2001).
https://doi.org/10.1016/S0168-9002(00)01088-3
 
11. A. Massara, S. Amaducci, L. Cosentino et al., Instruments, 7, 1 (2023).
https://doi.org/10.3390/instruments7010001
 
12. Y. Morishita, S. Yamamoto, K. Izaki at al., Nucl. Instr. and Meth. A, 764, 383 (2014).
https://doi.org/10.1016/j.nima.2014.07.046
 
13. J. McCloy, M. Bliss, B. Miller et al., J. Lumin., 57, 416 (2015).
https://doi.org/10.1016/j.jlumin.2014.09.015
 
14. P. Dorenbos, Nucl. Instr. and Meth. A, 486, 208 (2002).
https://doi.org/10.1016/S0168-9002(02)00704-0
 
15. A. R. Spowart, Nucl. Instr. and Meth., 75, 35 (1969).
https://doi.org/10.1016/0029-554X(69)90644-2
 
16. S. K. Lee, S. Y. Kang, Progress in Nuclear science and technology, 1, 194 (2011).
https://doi.org/10.15669/pnst.1.194
 
17. R. Stedman, Review of Scientific Instruments, 31, 1156, (1960).
https://doi.org/10.1063/1.1716833
 
18. T. Tojo, Nucl. Instr. and Meth., 53, 163 (1967).
https://doi.org/10.1016/0029-554X(67)91347-X
 
19. S.E. Mann, E.M. Schooneveld, N.J. Rhodes et. al., Optical Materials: X, 17, 100226 (2023).
https://doi.org/10.1016/j.omx.2022.100226
 
20. K. Era, S. Shionoya, Ya. Washizawa, J. Phys. Chem., 29, 1827 (1968).
https://doi.org/10.1016/0022-3697(68)90167-4
 
21. S. Yamamoto, H. Tomita, Appl. Radiat. Isot. 168, 109527 (2021).
https://doi.org/10.1016/j.apradiso.2020.109527
 
22. C. Wu, B.Tang , Z.J. Sun et al., Rad. Measur., 58, 128 (2013).
https://doi.org/10.1016/j.radmeas.2013.04.004
 
23. P.J. Dean, Progress in Solid State Chemistry, 8, 1 (1973).
https://doi.org/10.1016/0079-6786(73)90004-6
 
24. A. Osovizky, K. Pritchard, J. Ziegler et al., IEEE Trans. Nucl. Sci., 65, 1025 (2018).
https://doi.org/10.1109/TNS.2018.2809567
 
25. S. P. Wang, C. G. Shull, W. C. Phillips, Rev. Sci. Instrum., 33, 126 (1962).
https://doi.org/10.1063/1.1717642
 
26. Y. Yehuda-Zada, K. Pritchard, J.B. Ziegler et al., Nucl. Instr. and Meth. A, 892, 59 (2018).
https://doi.org/10.1016/j.nima.2018.02.099
 
27. J.F. Ziegler, J. P. Biersack, M. D. Ziegler, SRIM - The Stopping and Range of Ions in Matter, SRIM Company, USA (2008).
 
28. J. Schelten, M. Balzhäuser, F. Höngesberg et al., Physica B, 234-236, 1084 (1997).
https://doi.org/10.1016/S0921-4526(97)00024-0
 
29. F. Mantler-Niderstatter, F. Bensch, F. Grass, Instr. and Meth., 142, 463 (1977).
https://doi.org/10.1016/0029-554X(77)90682-6
 
30. A. C. Stephan, S. Dai, S.A. Wallace et al., Radiation Protection Dosimetry 116, 165 (2005).
https://doi.org/10.1093/rpd/nci121
 
31. B. D'Mellow, D. J. Thomas, M. J. Joyce et al., Nucl. Instr. and Meth. A, 577, 690 (2007).
https://doi.org/10.1016/j.nima.2007.05.001
 
 
 

Current number: