Funct. Mater. 2024; 31 (2): 163-172.

doi:https://doi.org/10.15407/fm31.02.163

Study of structure formation of transparent spinel-containing glass-ceramic materials for laser techniques

O. Savvova, O.Tur, O.Babich, O.Fesenko, Yu.Smyrnova, I.Tymoshchuk

O.M. Beketov National University of Urban Economy in Kharkiv, 17, Marshal Bazhanov str., Kharkiv, 61002, Ukraine

Abstract: 

The choice was substantiated and compositions of magnesium aluminosilicate glasses for the creation of transparent glass-ceramic materials with a self-organized nanostructure for the obtaining of broadband optical amplifiers were developed. The peculiarities of the structure formation of magnesium aluminosilicate glass-ceramic materials in relation to their light transmission have been studied. The influence of the viscosity of glasses on the nature of phase separation and crystallization under the conditions of low-temperature heat treatment has been established. The mode of heat treatment is selected for obtaining nanostructured spinel-containing glass-ceramic materials for laser technology.The results obtained can be used in the development of bioactive glass-ceramic materials with shortened resorption periods up to one month for the replacement of bone defects.

Keywords: 
transparent magnesium aluminosilicate glass-ceramic materials, spinel, self-organized structure, structure formation, phase separation, laser technique.
References: 
1. Laser Technology Market Size, Share & Trends Analysis Report By Type (Solid-state Lasers, Gas Lasers, Liquid Lasers, Semiconductor Lasers), By Product, By Application, By Vertical, By Region, And Segment Forecasts, 2023 - 2030. Grand View Research (2023).
 
2. H.H. Lim and T. Taira, Opt. Express, 27, 31307 (2019). 
https://doi.org/10.1364/OE.27.031307
 
3. T. Chen, X. Chen, C. Zhou et. al., Appl. Opt., 59, 4191 (2020). 
https://doi.org/10.1364/AO.391180
 
4. S. Nizhankovskyi, A. Kozlovskyi, O. Vovk et. al., Acta. Phys. Pol. A, 141, 371 (2022). 
https://doi.org/10.12693/APhysPolA.141.371
 
5. Z. Xiao, S. Yu, Y. Li et al., Mater. Sci. Eng. R Rep., 139, 100518 (2019). 
https://doi.org/10.1016/j.mser.2019.100518
 
6. S. Su, Q. Liu, Z. Hu et al., J. Alloys. Compd., 797, 1288 (2019). 
https://doi.org/10.1016/j.jallcom.2019.04.322
 
7. C. Goyes , E. Solarte, S. Valligatla, in: International Conference on Transparent Optical Networks (ICTON), Budapest, Hungary (2015), р. 1. 
https://doi.org/10.1109/ICTON.2015.7193488
 
8. B. Karmakar, Functional Glasses and Glass-Ceramics: Processing: Properties and Applications. Elseiver. Ins. (2017).
https://doi.org/10.1016/B978-0-12-805056-9.00011-8
 
9. V. Marghussian Nano-Glass Ceramics: Processing, Properties and Applications. Elseiver. Ins. (2015).
 

10. S.Y. Feng, C.L. Yu, L. Chen et al. Laser Phys., 20, 1687 (2010). 
https://doi.org/10.1134/S1054660X10150089

 
11. U.S. Patent 11,192,818.
 
12. L. Sant'Ana Gallo, F. Célarié, J. Bettini et al. Ceram. Int., 48, 9906 (2022). 
https://doi.org/10.1016/j.ceramint.2021.12.195
 
13. O.V. Savvova, S.M. Logvinkov, O.V. Babich, and A.R. Zdorik. Voprosy Khimii i Khimicheskoi Tekhnologii, 3, 96 (2018).
 
14. O. Savvova, O. Babich, V. Tymofeev et al. Functional Materials, 29(2), 228 (2022). 
https://doi.org/10.15407/fm29.02.228
 
15. J.M. Bussey, M.H. Weber, N.J. Smith-Gray et al. J. Non. Cryst. Solids, 600, 121987 (2023). 
https://doi.org/10.1016/j.jnoncrysol.2022.121987
 
16. Y. Wang, H. Qu, B. Liu et al. Nat. Commun., 14(1), 669 (2023). 
https://doi.org/10.1038/s41467-023-35982-7
 
17. Z. Pei, H. Huang, X. Guo et al. Crystals, 13(8), 1261 (2023). 
https://doi.org/10.3390/cryst13081261
 
18. B. Li, K. Jing, and H. Bian. J. Non-Cryst. Solids, 500, 487 (2018). 
https://doi.org/10.1016/j.jnoncrysol.2018.09.006
 
19. L. Cormier, L. Delbes, B. Baptiste, and V. Montouillout. J. Non-Cryst. Solids, 555, 120609 (2021). 
https://doi.org/10.1016/j.jnoncrysol.2020.120609
 
20. B. Mirhadi, B. Mehdikhani, and N. Askari. Solid State Sci., 14(4), 430 (2012). 
https://doi.org/10.1016/j.solidstatesciences.2012.01.010
 
21. G.H. Chen. J. Mater. Sci.: Materials in Electronics, 18(12), 1253. 
https://doi.org/10.1007/s10854-007-9283-8
 
22. O.V. Savvova, , G.K. Voronov, O.V. Babich et al. Functional Materials, 26(1), 182 (2019). 
https://doi.org/10.15407/fm26.01.182
 
23. O.V. Savvova, G.K. Voronov, V.L. Topchiy, and Yu.O. Smyrnova. Chem.Chem.Technol., 12(3), 391 (2018). 
https://doi.org/10.23939/chcht12.03.391
 
24. O. Savvova, H. Voronov, O. Fesenko et al. Chem.Chem.Technol., 16(2), 337 (2022). 
https://doi.org/10.23939/chcht16.02.337

Current number: