Funct. Mater. 2024; 31 (2): 163-172.

doi:https://doi.org/10.15407/fm31.02.163

Study of structure formation of transparent spinel-containing glass-ceramic materials for laser techniques

O. Savvova, O.Tur, O.Babich, O.Fesenko, Yu.Smyrnova, I.Tymoshchuk

O.M. Beketov National University of Urban Economy in Kharkiv, 17, Marshal Bazhanov str., Kharkiv, 61002, Ukraine

Abstract: 

The choice was substantiated and compositions of magnesium aluminosilicate glasses for the creation of transparent glass-ceramic materials with a self-organized nanostructure for the obtaining of broadband optical amplifiers were developed. The peculiarities of the structure formation of magnesium aluminosilicate glass-ceramic materials in relation to their light transmission have been studied. The influence of the viscosity of glasses on the nature of phase separation and crystallization under the conditions of low-temperature heat treatment has been established. The mode of heat treatment is selected for obtaining nanostructured spinel-containing glass-ceramic materials for laser technology.The results obtained can be used in the development of bioactive glass-ceramic materials with shortened resorption periods up to one month for the replacement of bone defects.

Keywords: 
transparent magnesium aluminosilicate glass-ceramic materials, spinel, self-organized structure, structure formation, phase separation, laser technique.
References: 

1. Laser Technology Market Size, Share & Trends Analysis Report By Type (Solid-state Lasers, Gas Lasers, Liquid Lasers, Semiconductor Lasers), By Product, By Application, By Vertical, By Region, And Segment Forecasts, 2023 – 2030. Grand View Research (2023).

2. H.H. Lim and T. Taira, Opt. Express, 27, 31307 (2019). https://doi.org/10.1364/OE.27.031307

3. T. Chen, X. Chen, C. Zhou et. al., Appl. Opt., 59, 4191 (2020). https://doi.org/10.1364/AO.391180

4. S. Nizhankovskyi, A. Kozlovskyi, O. Vovk et. al., Acta. Phys. Pol. A, 141, 371 (2022). https://doi.org/10.12693/APhysPolA.141.371

5. Z. Xiao, S. Yu, Y. Li et al., Mater. Sci. Eng. R Rep., 139, 100518 (2019). https://doi.org/10.1016/j.mser.2019.100518

6. S. Su, Q. Liu, Z. Hu et al., J. Alloys. Compd., 797, 1288 (2019). https://doi.org/10.1016/j.jallcom.2019.04.322

7. C. Goyes , E. Solarte, S. Valligatla, in: International Conference on Transparent Optical Networks (ICTON), Budapest, Hungary (2015), р. 1. https://doi.org/10.1109/ICTON.2015.7193488

8. B. Karmakar, Functional Glasses and Glass-Ceramics: Processing: Properties and Applications. Elseiver. Ins. (2017).

9. V. Marghussian Nano-Glass Ceramics: Processing, Properties and Applications. Elseiver. Ins. (2015).

\: Traditional>10. S.Y. Feng, C.L. Yu, L. Chen et al. Laser Phys.

11. U.S. Patent 11,192,818.

12. L. Sant’Ana Gallo, F. Célarié, J. Bettini et al. Ceram. Int., 48, 9906 (2022). https://doi.org/10.1016/j.ceramint.2021.12.19

13. O.V. Savvova, S.M. Logvinkov, O.V. Babich, and A.R. Zdorik. Voprosy Khimii i Khimicheskoi Tekhnologii, 3, 96 (2018).

14. O. Savvova, O. Babich, V. Tymofeev et al. Functional Materials, 29(2), 228 (2022). https://doi.org/10.15407/fm29.02.228

15. J.M. Bussey, M.H. Weber, N.J. Smith-Gray et al. J. Non. Cryst. Solids, 600, 121987 (2023). https://doi.org/10.1016/j.jnoncrysol.2022.121987

16. Y. Wang, H. Qu, B. Liu et al. Nat. Commun., 14(1), 669 (2023). https://doi.org/10.1038/s41467-023-35982-7.

17. Z. Pei, H. Huang, X. Guo et al. Crystals, 13(8), 1261 (2023). https://doi.org/10.3390/cryst13081261

18. B. Li, K. Jing, and H. Bian. J. Non-Cryst. Solids, 500, 487 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.09.006

19. L. Cormier, L. Delbes, B. Baptiste, and V. Montouillout. J. Non-Cryst. Solids, 555, 120609 (2021). https://doi.org/10.1016/j.jnoncrysol.2020.120609

20. B. Mirhadi, B. Mehdikhani, and N. Askari. Solid State Sci., 14(4), 430 (2012). https://doi.org/10.1016/j.solidstatesciences.2012.01.010

21. G.H. Chen. J. Mater. Sci.: Materials in Electronics, 18(12), 1253. https://doi.org/10.1007/s10854-007-9283-8

22. O.V. Savvova, , G.K. Voronov, O.V. Babich et al. Functional Materials, 26(1), 182 (2019). https://doi.org/10.15407/FM26.01.182.

23. O.V. Savvova, G.K. Voronov, V.L. Topchiy, and Yu.O. Smyrnova. Chem.Chem.Technol., 12(3), 391 (2018). https://doi.org/10.23939/chcht12.03.391

24. O. Savvova, H. Voronov, O. Fesenko et al. Chem.Chem.Technol., 16(2), 337 (2022). https://doi.org/10.23939/chcht16.02.337

Current number: