Funct. Mater. 2024; 31 (2): 178-184.

doi:https://doi.org/10.15407/fm31.02.178

High temperature hot corrosion and oxidation of 733E831 based superalloy with TiO2 thermal barrier coating

Kheder A. Salah, Mahmood A. Hamood, Mazin A. Abed

Department of Physics, College of Science, University of Mosul, Iraq

Abstract: 

The surfaces of turbine blades made of nickel-based alloys were coated with aluminum with thermal barrier titanium oxide (TiO2) at a temperature of 1050 °C. The coatings protect the surfaces of these alloys from oxidation and hot corrosion in the surrounding atmosphere, as well as from sodium sulfate (Na2SO4) dissolved in the fuel. The samples were subjected to periodic oxidation and hot corrosion at a temperature of 1080 °C. The weight gain of samples coated with aluminum as well as the weight loss after oxidation and hot corrosion were calculated. The coating with a thermal barrier (TiO2) shows good stability.

Keywords: 
oxidation, hot corrosion, aluminizing, thermal barrier coating.
References: 
1. Tatlock, G. J., Hurd, T. J., & Punni, J. S. Platinum Metals Review , 31 (1), 26 (1987).
https://doi.org/10.1595/003214087X3112631
 
2. Callister, W. D., Rethwisch, D. G., Blicblau, A., et.al.. Materials Science and Eengineering: an Introduction , 7 , 665, New York: John wiley & sons, 2007.
 
3. Zhang, H., Yuan, J., Song, W., et.al., Ceramics International , 46 (5), 6641, 2020.
https://doi.org/10.1016/j.ceramint.2019.11.152
 
4. Cahn, R. W. The coming of materials science. New York., 2021
 
5. Krishna Anand, V. G., & Parammasivam, K. M., J. Thermal Analysis and Calorimetry , 146 , 545, 2020.
https://doi.org/10.1007/s10973-020-10032-2
 
6. Essa, S. K., Chen, K., Liu, R., Wu, X., & Yao, M. X., J.Thermal Spray Technology , 30 , 424, 2021.
https://doi.org/10.1007/s11666-020-01124-4
 
7. Zhou, D., Mack, D. E., Bakan, E., Mauer, G., Sebold, D., Guillon, O., & Vaßen, R. (2020). J. American Ceramic Society , 103 (3), 2048, 2020.
https://doi.org/10.1111/jace.16862
 
8. Zhang, H., Yuan, J., Song, W., Zhou, X., et.al. Ceramics International , 46 (5), 6641, 2020.
https://doi.org/10.1016/j.ceramint.2019.11.152
 
9. Clarke, D. R., & Phillpot, S. R., Materials today , 8 (6), 22, 2005.
https://doi.org/10.1016/S1369-7021(05)70934-2
 
10. Cai, Z., Jiang, J., Wang, W., Liu, Y., & Cao, Z., Ceramics International , 45 (11), 14366, 2019.
https://doi.org/10.1016/j.ceramint.2019.04.152
 
11.Cheng, B., Zhang, Y. M., Yang, N., Zhang, M., et.al., Journal of the American Ceramic Society , 100 (5), 1820, 2017.
https://doi.org/10.1111/jace.14713
 
12. Javan, M. K., Moghaddam, A. A., Farvizi, M., Abbasian, et.al., Materials Research Express , 6 (9), 096437, 2019.
https://doi.org/10.1088/2053-1591/ab320f
 
13. Deqing, W., & Ziyuan, S., Journal of Materials Science Letters , 22 (14), 1003, 2003.
https://doi.org/10.1023/A:1024785208322
 
14. Qu, L., Choy, K. L., & Wheatley, R., Journal of the American Ceramic Society , 103 (10), 5881, 202
https://doi.org/10.1111/jace.17223

 

Current number: