Funct. Mater. 2024; 31 (2): 185-191.
The influence of aluminum on the morphological, optical properties and electronic structure of ZnO thin films
1Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, 36, Vernadsky Blvd. Academician Vernadsky, 36, 03142 Kyiv, Ukraine
2Vinnytsia National Technical University, 95 Khmelnytske Shosse, Vinnytsia, Ukraine, 21021, Vinnytsia, Ukraine
Using radiofrequency magnetron deposition method, thin ZnO films modified with aluminum were obtained. The aluminum modification was carried out by placing aluminum plates with a size of 0.5x0.5 cm2 on a zinc oxide target during the synthesis. The effect of aluminum substitution on the electronic, morphological, and optical properties of the thin films was studied. It is shown that the films have a developed surface with clusters of close to spherical shape. A change in the average size of the clusters, as well as an increase in the cluster size dispersion with increasing aluminum concentration was observed. X-ray photoelectron spectroscopy revealed that the binding energy of O 1s electrons decreases with increasing aluminum concentration, indicating an increase in the electron density on oxygen atoms. Spectrophotometric studies showed an increase in the transparency of the films in the visible and infrared ranges with increasing aluminum concentration. The optical spectroscopy method was used to estimate the band gap, which varies from 3.42 to 4.00 eV depending on the aluminum concentration.
1. H. Liu, F. Zeng, Y. Lin, G. Wang, & F. Pan. Applied Physics Letters, 102(18), 181908, (2013). https://doi.org/10.1063/1.4804613 |
||||
2. S. Sharma, & C. Periasamy, Superlattices and Microstructures, 73, (2014). https://doi.org/10.1016/j.spmi.2014.05.011 |
||||
3. L. Znaidi, A review, 174(1-3), 18-30, (2010). https://doi.org/10.1016/j.mseb.2010.07.001 |
||||
4. S. Saini, P. Mele, T. Oyake, J. Shiomi, J.P Niemelä; M. Karppinen; K. Miyazaki, L. Chaoyang, K. Toshiyuki, A. Ichinose, L Molina-Luna, Thin Solid Films, S0040609019303797-, (2019). | ||||
5. A. K. Ambedkar, M.Singh, V. Kumar, V, Kumar, B. P. Kumar, A. Kumar, Y. K. Gautam. Surfaces and Interfaces, 19, 10050, (2020). https://doi.org/10.1016/j.surfin.2020.100504 |
||||
6. Z. Zhang, C. Bao, W. Yao, S. Ma, L. Zhang, & S. Hou. Superlattices and Microstructures, 49(6), 644-653, (2011). https://doi.org/10.1016/j.spmi.2011.04.002 |
||||
7. V. Şenay, Journal of Materials Science: Materials in Electronics, 30, 9910-9915, (2019). https://doi.org/10.1007/s10854-019-01329-6 |
||||
8. L. J. Li, H. Deng, L. P. Dai, J.J. Chen, Q. L. Yuan, & Y. Li, Materials Research Bulletin, 43(6), 1456-1462, (2008). https://doi.org/10.1016/j.materresbull.2007.06.042 |
||||
9. M.W. Alam, M.Z. Ansari, M. Aamir, et. al., Crystals, 12(2), 128, (2022). https://doi.org/10.3390/cryst12020128 |
||||
10. A. Barnasas, N. Kanistras, A. Ntagkas, D.I. Anyfantis, A. Stamatelatos, V. Kapaklis, et. al, Physica E: Low-Dimensional Systems and Nanostructures , 120, 114072, (2020). https://doi.org/10.1016/j.physe.2020.114072 |
||||
11. D. Pal, J. Singhal, A. Mathur, A. Singh, S. Dutta, S. Zollner, S. Chattopadhyay, Applied Surface Science, 421, 341-348, (2017). https://doi.org/10.1016/j.apsusc.2016.10.130 |
||||
12. R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y. Al-Douri, Ceram. Int., 39, No. 3: 2283-2292, (2013). https://doi.org/10.1016/j.ceramint.2012.08.075 |
||||
13. D. K. Kim and H.B. Kim, J. Alloy. Compd, 509, No. 2: 421-425, (2011). https://doi.org/10.1016/j.jallcom.2010.09.047 |
||||
14. V.P. Singh and Ch. Rath, RSC Adv., 5, No.55: 44390-44397, (2015). https://doi.org/10.1039/C5RA04767F |
||||
15. J. Tauc, Mater. Res. Bull, 3(1), 37-46, (1968). https://doi.org/10.1016/0025-5408(68)90023-8 |
||||
16. T. S. Moss, Proceedings of the Physical Society. Section B, 67(10), 775-782, (1954). https://doi.org/10.1088/0370-1301/67/10/306 |
||||
17. E. Burstein, Physical Review, 93(3), 632-633, (1954). https://doi.org/10.1103/PhysRev.93.632 |