Funct. Mater. 2024; 31 (2): 199-204.
Protective properties of ZnO nanofilm against wear and mechanical damage of sensitive SPR sensor element
1 Institute of Semiconductor Physics NAS of Ukraine, Nauki ave., Kyiv,Ukraine, 03028
2 National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37, Beresteiskyi ave., Kyiv, Ukraine, 03056
The effectiveness of the protective properties of ZnO films obtained by sol-gel technology was studied by plasmon magnetic resonance. Amorphous films 10 nm thick with low surface roughness provided an increase in resistance to mechanical wear by more than 2 times. The resistance to film destruction increased by approximately 27 times, which is a significant achievement. Combined with a 5 nm thin layer of chromium to enhance adhesion between gold and glass, amorphous thin films of ZnO have demonstrated excellent protective properties for the sensing elements of sensor devices based on the phenomenon of surface plasmon resonance.
1. J. Aubin, M. Ferrando, V. Jiricny, Chem. Eng. Sci., 65(6), 2065, (2010). https://doi.org/10.1016/j.ces.2009.12.001 |
||||
2. H.V. Dorozinska, G.V. Dorozinsky, V.P. Maslov, Functional Materials., 25, 158, (2018). | ||||
https://doi.org/10.15407/fm25.01.158 | ||||
3. A.P. Vinogradov, A.V. Dorofeenko, A.A. Pukhov et al., Phys. Rev. B., 97(23), 235407,(2018). https://doi.org/10.1103/PhysRevB.97.235407 |
||||
4. I.Z. Indutnyi, Yu.V. Ushenin, D. Hegemann et al., SPQEO, 20 (3), 362, (2017) | ||||
5. A.V. Fedorenko, N.V. Kachur, V.P. Maslov, SPQEO. 26 (2), 242 (2023) https://doi.org/10.15407/spqeo26.02.242 |
||||
6. V. Tomaev, V. Polischuk, T. Vartanyan et al., Opt. Spectrosc. 129, 1037,(2021) https://doi.org/10.1134/S0030400X21070201 |
||||
7. P. Sanpradit, E. Byeon, J.-S. Lee, S. Peerakietkhajorn, Comp. Biochem. Physiol. C Toxicol. Pharmacol., 273, 109720, (2023). https://doi.org/10.1016/j.cbpc.2023.109720 |
||||
8. N.P. Klochko, K.S. Klepikova, G.S. Khrypunov et al., SPQEO., 17(4), 358, (2014). | ||||
9. V.V. Kidalov, A.F. Dyadenchuk, V.A. Baturin et al., SPQEO. 26(2), 140, (2023). | ||||
10. T.V. Semikina, S.V. Mamykin, M. Godlewski et al., SPQEO. 16(2), 111, (2013). | ||||
11. C. Otalora, M.A. Botero, G. Ordoñez, J. Mater. Sci. 56(28), 15538, (2021). https://doi.org/10.1007/s10853-021-06275-5 |
||||
12. M. Saleem, L. Fang, H.B. Ruan et al., Int. J. Phys. Sci. 7(23), 2971, (2012). | ||||
13. S Suzuki, H Osaki, E. Ando, Jpn J ApplPhys. 35(3), 1862, (1997) https://doi.org/10.1143/JJAP.35.1862 |
||||
14. X. Li, A. Wang, K.-R. Lee, Tribol. Int., 36, 446, (2019) | ||||
15. H. S. Katrych, S. Petrushenko, O. Botsula, Bulletin of V.N. Karazin Kharkiv National University. Series "Radio Physics and Electronics", 35, 79., (2021) https://doi.org/10.26565/2311-0872-2021-35-07 |
||||
16. L. Malav, P. K. Tyagi, International Journal of Trend in Scientific Research and Development (ijtsrd), 3(3), 587, (2019) https://doi.org/10.31142/ijtsrd22908 |
||||
17. Patent of Ukraine # 126835, 2018. |