Funct. Mater. 2024; 31 (2): 232-245.

doi:https://doi.org/10.15407/fm31.02.232

First-principles study of fundamental properties of BX (X= As, P,N and Bi ) compounds

Yousra Megdoud1,2, Yamina Benkrima3, Latifa Tairi4, Redha Meneceur5, Sebti Ghemid2, Hocine Meradji2

1Institute of Sciences, Centre University Morsli Abdallah Tipaza, Algeria
2LPR Laboratory, Département of Physics, Faculty of Science, Badji Mokhtar University, Annaba, Algeria
3Ecole Normale Supérieure de Ouargla, 30000 Ouargla, Algeria
4Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga16014 Algiers Algeria
5Unit for the Development of Renewable Energies in Arid Zones (UDERZA), El Oued University, Algeria

Abstract: 

Ab initio calculations were carried out on the structural, electronic, thermal and optical properties of the binary compounds BP, BAs, BN and BP in the different phases: zinc blende (B3), NaCl (B1), CsCl (B2), NiAs (B8) and wurtzite (B4).We used the augmented linearized plane wave method (FP-LAPW) based on the density functional theory (DFT). The exchange-correlation potential (XC) was processed through the generalized gradient approximation developed by Wu-Cohen (WC-GGA) to optimize the appropriate structural parameters. Moreover, the modified Becke-Johnson (mBJ) method is used to determine the electronic band structure of BP, BAs, BN and BBi semiconductors. Optical properties were studied: dielectric function, refractive index, absorption coefficient and reflectivity.The results assert that the zinc blende structure is the stable phase with an indirect band gap.

Keywords: 
Density functional theory DFT, FPLAPW method, mBj, band-gap, optical properties and Wc-GGA
References: 
1. Y. Akahama, M. Nishimura, K. Kinoshita,
 
H. Kawamura, Y.Oshishi, Phys. Rev. Lett. 96, 045505 (2006)
https://doi.org/10.1103/PhysRevLett.96.017404
 
2. O. Degtyareva, V. F. Degtyareva, F. Porsch, W. B. Holzapfel J. Phys., Condens. Matter 14, 389 (2002).
https://doi.org/10.1088/0953-8984/14/3/309
 
3. G. J. Ackland, Rep. Prog. Phys. 64, 483 (2001).
https://doi.org/10.1088/0034-4885/64/4/202
 
4. A. Mujica, Angel Rubio, A. Munoz, R. J. Needs, Rev. Mod. Phys. 75, 863 (2003).
https://doi.org/10.1103/RevModPhys.75.863
 
5. D. Kirin, I. Lukačević, Phys. Rev B 75, 172103 (2007).
https://doi.org/10.1103/PhysRevB.75.172103
 
6. A. Garcia and M. L. Cohen, Phys. Rev. B 47, 4215 (1993).
https://doi.org/10.1103/PhysRevB.47.4215
 
7. R. M. Wentzcovitch, K. J. Chang, M. L. Cohen, Phys. Rev. B 34, 1071 (1986)
https://doi.org/10.1103/PhysRevB.34.1071
 
8. M. Ferhat, A Zaoui, M Certier and H Aourag, Physica B 252, 229 (1998).
https://doi.org/10.1016/S0921-4526(98)00149-5
 
9. R. M. Wentzcovitch, M. L. Cohen and P. K. Lam, Phys. Rev. B 36, 6058 (1987)
https://doi.org/10.1103/PhysRevB.36.6058
 
10. O. A. Golikova Phys. Status Solidi (a) 51, 11 (1979)
https://doi.org/10.1002/pssa.2210510102
 
11. M. P. Surh, S. G. Louie, M. L. Cohen Phys. Rev. B 43, 9126 (1991).
https://doi.org/10.1103/PhysRevB.43.9126
 
12. M. Ferhat, B. Bouhafs, A. Zaoui, H. Aourag, J. Phys.,Condens. Matter 10, 7995 (1998).
https://doi.org/10.1088/0953-8984/10/36/010
 
13. B. Bouhafs, H. Aourag, M. Ferhat, M. Certier, J. Phys., Condens. Matter 11, 5781 (1999).
https://doi.org/10.1088/0953-8984/11/30/309
 
14. B. Bouhafs, H. Aourag, M. Ferhat, M. Certier, J. Phys., Condens.Matter 12, 5655 (2000)
https://doi.org/10.1088/0953-8984/12/26/312
 
15. A. Zaoui, M. Ferhat, Phys. Stat. Sol. (b) 225, 15 (2001)
https://doi.org/10.1002/(SICI)1521-3951(200105)225:1<15::AID-PSSB15>3.0.CO;2-7
 
16. D. Tounat, M. Ferhat, A. Zaoui, J. Phys., Condens. Matter 18, 3647 (2006)
https://doi.org/10.1088/0953-8984/18/15/011
 
17. P. Carrier, Su.-H. Wei, Phys. Rev. B 70, 035212 (2004)
 
18. H. Meradji, S. Drablia, S. Ghemid, H. Belkhir, B. Bouhafs, A.Tadjer, Phys. Stat. Sol. (b) 241, 2881 (2004).
https://doi.org/10.1002/pssb.200302064
 
19. K. Bouamama, P. Djemia, N. Lebga, K. Kassali, High Pressure Research, 27, 269 (2007).
https://doi.org/10.1080/08957950701265359
 
20. J.A. Sanjurjo, E.Lopez-curz, P. Vogl, M. Cordona Phys. Rev. B 28, 4579 (1983).
https://doi.org/10.1103/PhysRevB.28.4579
 
21. O. K. Andersen, Phys. Rev. B 12, 3060 (1975).
https://doi.org/10.1103/PhysRevB.12.3060
 
22. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964).
https://doi.org/10.1103/PhysRev.136.B864
 
23. W. Kohn, L.J. Sham, Phys. Rev. 140, 1133 (1965).
https://doi.org/10.1103/PhysRev.140.A1133
 
24. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka and J. Luitz, WIEN2K: An Augmented Plane Wave Plus Local Orbitals Program for calculating Crystal properties (Vienna University of Technology, Austria, (2008).
 
25. Z. Wu, R. E. Cohen, Phys. Rev. B 73, 235116 (2006).
 
26. F.Tran, P. Blaha, Phys Rev Lett. 102, 226401 (2009).
https://doi.org/10.1103/PhysRevLett.102.226401
 
27. . F.D. Murnaghan, Proc. Natl.Acad. Sci. USA 30, 5390(1944)
https://doi.org/10.1073/pnas.30.9.244
 
28. M. Ustundag, M. Aslan, Battal G. Yalcin, Comput. Mater. Sci. 81, 471.(2014)
https://doi.org/10.1016/j.commatsci.2013.08.056
 
29. A. Zaoui, F. El Haj Hassan, J. Phys. Condens. Matter 13, 253.(2001)
https://doi.org/10.1088/0953-8984/13/2/303
 
30. M. Sarwan, P. Bhardwaj, S. Singh, Chem. Phys. 426, 1 (2013).
https://doi.org/10.1016/j.chemphys.2013.09.008
 
31. M.J. Mehl, J.E. Osburn, D.A. Papaconstantopoulos, B.M. Klein, Phys. Rev. B. 41, 10311.(1990)
https://doi.org/10.1103/PhysRevB.41.10311
 
32. R.G. Greene, H. Luo, A.L. Ruoff, S.S. Trail, F.J. DiSalvo J. Phys. Rev. Lett. 73, 2476.(1994)
https://doi.org/10.1103/PhysRevLett.73.2476
 
33. Perri J A, Laplaca S and Post B Acta Crystallography. 11, 310, (1958).
https://doi.org/10.1107/S0365110X58000827
 
34. Ku S M J. Electrochem. Soc. 113, 813-6, (1966)
https://doi.org/10.1149/1.2424125
 
35. Geisz, J. F; Friedman, D. J; Olson, J. M; Kurtz, Sarah R; Reedy, R. C; Swartzlander, A. B; Keyes, B. M; Norman, A. G. Applied Physics Letters. 76 (11), 1443 (2000).
https://doi.org/10.1063/1.126058
 
36. R.J. Archer, R.Y. Koyama, E.E. Loebner, R.C. Lucas, Phys. Rev. Lett. 12, 538 (1964).
https://doi.org/10.1103/PhysRevLett.12.538
 
37. V.A. Fomichev, I.I. Zhukova, I.K. Polushina, J. Phys. Chem. Solids 29, 1025 (1968).
https://doi.org/10.1016/0022-3697(68)90238-2
 
38. R.M. Wentzcovitch, K.J. Chang, M.L. Cohen, Phys. Rev. B 34, 1071 (1986)
https://doi.org/10.1103/PhysRevB.34.1071
 
39. Y. Megdoud, R. Mahdjoubi, M.Amrani, H. Bendjeddou, S. Ghemid, H. Meradji, R. Khenata , Computational Condensed Matter 22 eOO434(2020).
https://doi.org/10.1016/j.cocom.2019.e00434
 
40. M. Benchehima, H. Abid, K. Benchikh, Mater. Chem. Phys. 198, 214.(2017)
https://doi.org/10.1016/j.matchemphys.2017.06.009
 
41. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401.(2009)
https://doi.org/10.1103/PhysRevLett.102.226401
 
42. C. Ambrosch-Draxl, J. O. Sofo, Comput. Phys. Commun. 175, 1 (2006).
https://doi.org/10.1016/j.cpc.2006.03.005
 
43. N. M. Ravindra, S. Auluck, V. K. Srivastava, Phys. Status Solidi B 93 K, 155. (1979)
https://doi.org/10.1002/pssb.2220930257
 
44. D.R. Lide, Handbook of Chemistry and Physics, eightieth ed., CRC Publication, OCLC World Cat, 1999e2000.
 
45. S. Daoud, N. Bioud, N. Lebga, Chin. J. Phys. 57 165.(2019)
https://doi.org/10.1016/j.cjph.2018.11.018
 
46. M. Sarwan, P. Bhardwaj, S. Singh, Chem. Phys. 426,1 (2013)
https://doi.org/10.1016/j.chemphys.2013.09.008
 
47. A. Bouhemadou, R. Khenata, M. Kharoubi, T. Seddik, Ali H. Reshak, Y. Al-Douri, Comput. Mater. Sci. 45, 474 (2009)
https://doi.org/10.1016/j.commatsci.2008.11.013
 
48. P. Debye, Ann. Phys. 344, 789. (1912)
https://doi.org/10.1002/andp.19123441404
 
49. A.T. Petit, P.L. Dulong, Ann. Chem. Phys. 10,395. (1819)
 
50. N. Bioud, K. Kassali, N. Bouarissa, J. Electron. Mater. 46, 2521.(2017)
https://doi.org/10.1007/s11664-017-5335-x
 
51. B.Y. Thakore, M.J. Joshi, N.K. Bhatt, A.R. Jani, J. Optoelectron. Adv. Mater. 11, 461,(2009)
 
52. Landolt-Bornstein, in: O. Madelung (Ed.), New Series, Group III, vol. 17a, Springer-Verlag, Berlin, 1982.
 
53. I. Hattabi, A. Abdiche, F. Semari, R. Khenata, F. Soyalp, Chin. J. Phys. 56 , 2332 (2018).
https://doi.org/10.1016/j.cjph.2018.06.025
 
54. M. Ustundag, M. Aslan, Battal G. Yalcin, Comput. Mater. Sci. 81, 471 (2014)
https://doi.org/10.1016/j.commatsci.2013.08.056
 
55. D. Touat, M. Ferhat, A. Zaoui, J. Phys. Condens. Matter 18, 3647 (2006)
https://doi.org/10.1088/0953-8984/18/15/011
 
56. 1. Gorczyca and N. E. Christensen, Physica B 185,410 (1993).
https://doi.org/10.1016/0921-4526(93)90270-G
 
57. P. Rodriguez-Hernandez, M. Gonzalez-Diaz, A. Munoz, Phys. Rev. B 51, 14705, (1995).
https://doi.org/10.1103/PhysRevB.51.14705
 
58. S. Kristhnamurthy, A, Sher, A.B. Chen, Phys. Rev. Lett. 55,320 (1985).
 
59. W. Sekkal, H. Aourag and M. Certier, J. Phys. Chem Solids, 59, 8, 1293 (1998)
https://doi.org/10.1016/S0022-3697(98)00038-9
 
60. G. Kern, G. Kresse, J. Hafner, Physical Review B 59(13), (1999).
https://doi.org/10.1103/PhysRevB.59.8551
 
61. J. Donohue, Structure of Elements, New York : Wiley, (1974)
 
62. V. A. Pesin, Sverktverd.Mater. 6, 5 (1980).
 
63. S.Hule and D. A. Keen, Phys. Rev. B 50, 5868 (1994)
https://doi.org/10.1103/PhysRevB.50.5868
 
64. J.C.Wooley, Compound Semiconductors edited by R.K. Willardson and H.L. Goenng p.3,(Reinhold, New York, 1962),
 
65. Yong-Nian Xu and W. Y. Ching, Phys. Rev. B 44, 7787, (1991).
https://doi.org/10.1103/PhysRevB.44.7787
 
66. Engin Deligoz, Kemal Colakoglu, Yasemin Oztekin Ciftci, Haci Ozisik, Journal of Physics and Chemistry of Solids, 68, 482, 2007.
https://doi.org/10.1016/j.jpcs.2006.11.021
 
67. Salah Daoud1 * , Noudjoud Lebga2,3, Intern. J. Phys. Res., 4(1) , 1, 2016.
 
68. S.Cui, W. Feng, H.Hu, Z.Feng & Y.Wang, Comp. Materials Science, 4, 968, (2010).
https://doi.org/10.1016/j.commatsci.2009.11.030
 
69. K. Bouamama, P. Djemia, N. Lebga,K. Kasali, High Pressure Research, 27, 269, 2007
https://doi.org/10.1080/08957950701265359
 
70. M. Ferhat and A. Zaoui, Phys. Rev. B 73 115107 (2006).
https://doi.org/10.1103/PhysRevB.73.115107
 
71. S.Q. Wang and H.Q. Ye, Phys. Rev. B 66, 235111 (2002).
https://doi.org/10.1103/PhysRevB.66.235111
 
72. D. Madouri, M. Ferhat, Phys. Status Solidi B 242, 285 (2005)
https://doi.org/10.1002/pssb.200460029
 
73. R.M. Wentzcovitch, M.L. Cohen, P.K. Lam, Phys. Rev. B 36, 6058. (1987)
https://doi.org/10.1103/PhysRevB.36.6058
 
74. M. Sarwan, P. Bhardwaj, S. Singh, Chem. Phys. 426,1. (2013)
https://doi.org/10.1016/j.chemphys.2013.09.008
 
75. A. Boudjemline, MazharulM. Islam, L. Louail, B. Diawara, Physica B, 406 (2011)
https://doi.org/10.1016/j.physb.2011.08.043
 
76. M. Talati, P.K. Jha, Int. J. Mod. Phys. B 24,1235. (2010)
https://doi.org/10.1142/S0217979210055184
 
77. Sadik Bagci and Battal G Yalcin, J. Phys. D: Appl. Phys. 48, 475304 (11pp), (2015)
https://doi.org/10.1088/0022-3727/48/47/475304
 
78. Xia H, Xia Q and Ruoff A L J. Appl. Phys. 74,1660, (1993).
https://doi.org/10.1063/1.354817
 
79. Perri J A, Laplaca S and Post B Acta Crystallography, 11, 310, (1958).
https://doi.org/10.1107/S0365110X58000827
 
80. Ku S M J. Electrochem. Soc. 113, 813-6, (1966)
https://doi.org/10.1149/1.2424125
 
81. Geisz, J. F; Friedman, D. J; Olson, J. M; Kurtz, Sarah R; Reedy, R. C; Swartzlander, A. B; Keyes, B. M; Norman, A. G. Applied Physics Letters. 76 (11), 1443,(2000).
https://doi.org/10.1063/1.126058
 
82. R.J. Archer, R.Y. Koyama, E.E. Loebner, R.C. Lucas, Phys. Rev. Lett. 12, 538 (1964).
https://doi.org/10.1103/PhysRevLett.12.538
 
83. V.A. Fomichev, I.I. Zhukova, I.K. Polushina, J. Phys. Chem. Solids 29, 1025 (1968).
https://doi.org/10.1016/0022-3697(68)90238-2
 
84. M. Benchehima, H. Abid, K. Benchikh, Mater. Chem. Phys. 198, 214. (2017)
https://doi.org/10.1016/j.matchemphys.2017.06.009
 
85. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401. (2009)
https://doi.org/10.1103/PhysRevLett.102.226401
 
86. E. Calabresse, W.B. Fowler, Phys. Status Solidi B 56, 621. (1973)
https://doi.org/10.1002/pssb.2220560225
 
87. S. Bagci, B.G. Yalcin, J. Phys. D Appl. Phys. 48,475304.(2015)
https://doi.org/10.1088/0022-3727/48/47/475304
 
88. M.P. Surh, S.G. Louie, M.L. Cohen, Phys. Rev. B 43, 9126. (1991)
https://doi.org/10.1103/PhysRevB.43.9126
 
89. F. El Haj Hassan, H. Akbarzadeh, Mater. Sci. Eng. 121,170,(2005)
https://doi.org/10.1016/j.mseb.2005.03.019
 
90. J. Buckeridge, D.O. Scanlon, Phys. Rev. Mater. 3 05,1601(R). (2019),
https://doi.org/10.1103/PhysRevMaterials.3.051601
 
91. M. Benchehima, H. Abid, Comput. Mater. Sci. 14 114. (2018)
https://doi.org/10.1016/j.cocom.2018.01.011
 
92. A. Gazhulina, M. Marychev, J. Alloy. Comp. 623 413, (2015)
https://doi.org/10.1016/j.jallcom.2014.11.028
 
93. M. Benchehima, H. Abid, K. Benchikh, Mater. Chem. Phys. 198, 214. (2017)
https://doi.org/10.1016/j.matchemphys.2017.06.009
 
94. P. Rodriguez-Hernandez, M. Gonzalez-Diaz, and A. Munoz, Phys. Rev. B 51, 14705 (1995).
https://doi.org/10.1103/PhysRevB.51.14705
 
95. Yong-Nian Xu, W. Y. Ching, Physical Review B, 44, 1, 1991.
https://doi.org/10.1103/PhysRevB.44.1
 
 
 

Current number: