Funct. Mater. 2024; 31 (2): 246-251.

doi:https://doi.org/10.15407/fm31.02.246

On regularities of some carbohalogenation processes in chloride and bromide melts of various cation composition

V.L. Cherginets1, A.L. Rebrov1, T.P. Rebrova1, T.V. Ponomarenko1, A.G. Varich1, O.I. Yurchenko2, V.V. Soloviev3

1Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Nauky avenue, 60, 61001, Kharkiv, Ukraine
2V.N. Karazin Kharkiv National University, Svobody Sq., 4, 61022, Kharkiv, Ukraine
3Poltava V.G. Korolenko National Pedagogical University

Abstract: 

The generalization of course of halogenation and carbohalogenation processes (purification from oxygen-containing admixtures) in chloride and bromide melts was performed on the basis of physicochemical imaginations. The carbohalogenation processes were shown to be more thermodynamically profitable comparing with simple halogenation since oxygen yielding as a result of carbohalogenation is fixed in CO (or CO2). The features of CX4 (X=Cl, Br) application as carbohalogenating agents are discussed. From the viewpoint of chemical kinetics, the kinetic order of chemical stage (n) is dependent on the composition of the product of oxide ion interaction with the most acidic cation of melt. For Y3+ containing melts it is equal to 1 whereas for alkali and alkaline earth melts n=2. In the case of performing carbobromination (′C+Br2′ Red-Ox pair) the limit of purification from oxygen-containing admixtures is not dependent on the surface area of carbon that means that system achieves true chemical equilibrium. The approach allowing to estimate limits of halide melts purification from oxygen-containing admixtures is described.

Keywords: 
melts, chlorides, bromides, deoxidization, carbohalogenation
References: 
1. J. Glodo, E. van Loef, N. Cherepy, S. A. Payne, C. M. Wilson, K. S. Shah, IEEE Trans. Nucl. Sci., 57, 128 (2010). 
https://doi.org/10.1109/TNS.2009.2036352
 
2. K.S. Pestovich, L. Stand, C.L. Melcher, E. Van Loef, M. Zhuravleva, J. Cryst. Growth, 627, (127540) 2024. 
https://doi.org/10.1016/j.jcrysgro.2023.127540
 
3. G. Yang, H. Yan, Z. Liu, W. Ma, S. Guo, Y. Yang, Solid State Sci. 148, 107328 (2024). 
https://doi.org/10.1016/j.solidstatesciences.2023.107328
 
4. D. Yang, M. Yu, Y. Mubula, W. Yuan, Zh. Huang, B. Lin, G. Mei, T. Qiu, J. Rare Earths, 2023. 
https://doi.org/10.1016/j.jre.2023.08.013
 
5. M. Hu, R. Tan, T. Ma, M. Hu, Materials Today Commun., 35, 105531 (2023). 
https://doi.org/10.1016/j.mtcomm.2023.105531
 
6. V.L. Cherginets, T.P. Rebrova, Yu.N. Datsko, T.G. Deineka, E.N. Kisil, N.N. Kosinov, E.E. Voronkina, , J. Chem.Eng.Data, 55, 5696 (2010). 
https://doi.org/10.1021/je100643g
 
7. Yu.K. Delimarsky, Chemistry of ionic melts, Kiev: Naukova Dumka, 1980.
 
8. V.L. Cherginets, Oxoacidity: reactions of oxocompounds in ionic solvents, Amsterdam-Boston-Heidelberg-London-New York-Oxford-Paris-San Diego-San Francisco-Singapore-Sydney-Tokyo: Elsevier, 2005.
 
9. http://www.microkat.gr/msds/
 
Carbon%20tetrachloride.html.
 
10. https://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html.
 
11. https://dockchemicals.com/wp-content/uploads/2020/11/DOCK-C_Product_Data....
 
12. V.L.Cherginets,T.P.Rebrova, T.V.Ponomarenko, V.A.Naumenko, Yu.N. Datsko, RSC Adv., 4, 52915 (2014). 
https://doi.org/10.1039/C4RA07806C
 
13. V.L. Cherginets, T.P. Rebrova, T.V. Ponomarenko, E.P. Kisil, L.I. Filippovich, J.Chem.Eng.Data, 56, 3897 (2011). 
https://doi.org/10.1021/je200603c
 
14. V.L. Cherginets, T.P. Rebrova, Electrochim.Acta. 45, 469 (1999). 
https://doi.org/10.1016/S0013-4686(99)00274-1
 
15. V.L. Cherginets, T.P. Rebrova, T.V. Ponomarenko, V.A. Naumenko, Yu.N. Datsko, RSC Adv., 4, 52915 (2014). 
https://doi.org/10.1039/C4RA07806C
 
16. V.L. Cherginets, T.P. Rebrova, V.A. Naumenko, A.L. Rebrov, O.I. Yurchenko, RSC Adv., 6, 58780 (2016). 
https://doi.org/10.1039/C6RA11551A

Current number: