Funct. Mater. 2024; 31 (2): 252-259.

doi:https://doi.org/10.15407/fm31.02.252

Enhancing the stability of perovskite nanocrystals in polyacrylate composites

T. Skrypnyk1,2, I. Bespalova1, L. Boesel2, O. Sorokin1

1Institute for Scintillation Materials, NAS of Ukraine Kharkiv, Ukraine
2Empa, Swiss Federal Laboratories for Materials Science and Technology St. Gallen, Switzerland

Abstract: 

In this research, were investigated the incorporation of perovskite nanocrystals into polymers to enhance the optical properties and stability of the nanocrystals for further practical applications (e.g., energy harvesting, luminescent and scintillation detectors, and imaging instruments). These results demonstrate different options for improving the stability and photoluminescence of perovskite nanocrystals of various compositions by incorporating them into polymer systems to prevent their degradation and reduce the impact of different ambient conditions.

Keywords: 
perovskite, nanocrystals, polymer, composites, stability, photoluminescence.
References: 
1. L. Protesescu, S. Yakunin, M.I. Bodnarchuk, et al., Nano Lett., 15, 3692 (2015).
https://doi.org/10.1021/nl5048779
 
2. T. Leijtens, G. Eperon, N. Noel, et al., Adv. Energy Mater., 5, 1500963 (2015).
https://doi.org/10.1002/aenm.201500963
 
3. J. Shamsi, A.S. Urban, M. Imran, et al., Chemical Reviews., 119, 3296 (2019).
https://doi.org/10.1021/acs.chemrev.8b00644
 
4. M. Kovalenko, L. Protesescu, M. Bodnarchuk, Science, 358,745(2017).
https://doi.org/10.1126/science.aam7093
 
5. Q. Akkerman, G. Rainò, M.Kovalenko, et al., Nat Mater., 17, 394 (2018).
https://doi.org/10.1038/s41563-018-0018-4
 
6. M. Meyns, M. Perálvarez, A. Heuer-Jungemann, et al., ACS Appl. Mater. Interfaces, 8, 19579 (2016).
https://doi.org/10.1021/acsami.6b02529
 
7. M. Bodnarchuk, S. Boehme, S. Brinck, et al., ACS Energy Lett., 4, 63 (2019).
https://doi.org/10.1021/acsenergylett.8b01669
 
8. T. Skrypnyk, I. Bespalova, I. Grankina, et al., Funct. Mater., 29, 481 (2022).
  https://doi.org/10.15407/fm29.04.481
 
9. A. Dey, J. Ye, A. De et al., ACS Nano, 15, 10775 (2021).
https://doi.org/10.1021/acsnano.0c08903
 
10. Du, X., Wu, G., Cheng, J., et al., RSC Adv., 7, 10391(2017).
https://doi.org/10.1039/C6RA27665B
 
11. D. Bozukova, Ch. Pagnoulle, R Jérôme, et al., Mater. Sci. Eng. Rep., 69, 63 (2010).
https://doi.org/10.1016/j.mser.2010.05.002
 
12. H. Yu, G. Zhou, S.K. Sinha, et.al., Sens. Actuators A Phys., 159, 105 (2010).
https://doi.org/10.1016/j.sna.2010.03.001
 
13. T. Fujii, Microelectron. Eng., 61-62, 907 (2002).
https://doi.org/10.1016/S0167-9317(02)00494-X
 
14. T. Skrypnyk, M. Bodnarchuk, M. Kovalenko, et al., Proceedings of the 2023 IEEE 13th International Conference "Nanomaterials: Applications and Properties", NAP 2023.

Current number: