Funct. Mater. 2024; 31 (2): 296-303.

doi:https://doi.org/10.15407/fm31.02.296

Effective functional materials for treatment of water from organic compounds

V.V. Datsenko, E.B. Khobotova

Kharkiv National Automobile and Highway University, 61002, 25, Yaroslava Mudrogo St., Kharkiv, Ukraine

Abstract: 

The paper substantiates and experimentally confirms the possibility of obtaining copper-zinc ferritic materials from a sulfate copper-zinc electrolyte by co-precipitation in four modifications at a ratio of the initial molar concentrations of the components: ΣMe2+ : Fe2+ = 1 : 2.5. The main stages of obtaining copper-zinc ferritic materials are determined. The possibility of using the synthesized ferrite materials for water purification from organic dyes has been experimentally confirmed. The features and efficiency of using the synthesized ferrites as sorption materials are evaluated. The mechanism of purification of aqueous solutions from organic dyes by ferrite materials has been studied. It has been established that the adsorption process during purification of aqueous solutions from organic dyes by ferrite materials is described by first-order kinetic equations. The adsorption rate of methylene blue and methyl violet is 6 times higher than that of Congo red. Using CurveExpert Professional curve fitting and data analysis, non-linear C02–n dependences were analyzed. A scheme of the method to optimize the process of wastewater treatment from organic dyes by means of copper-zinc ferrite is proposed.

Keywords: 
copper-zinc ferrites, composite materials, mineral composition, organic dyes, treatment, cleaning process kinetics, sorption and photocatalytic properties.
References: 
1. V. Larin, V. Datsenko, L. Egorova, I. Hraivoronska, T. Herasymchuk, French-Ukrainian J. of Chem, 8(1), 66 (2020)
https://doi.org/10.17721/fujcV8I1P66-75
 
2. V. Datsenko, N. Khimenko, L. Egorova, Ya. Svishchova, O. Dubyna, O. Budvytska, N. Lyubymova, V. Pasternak, L. Pusik, East.-Eur. J. Enterp. Technol., 6, 42 (2019) 
https://doi.org/10.15587/1729-4061.2019.188251
 
3. V. V. Datsenko, E. B. Khobotova, O. V. Vankevich, S. M. Tolmachov, Funct. Mater., 29, 62 (2022) 
https://doi.org/10.15407/fm29.01.62
 
4. V. Datsenko, Petroleum and Coal, 63(2), 467 (2021)
https://doi.org/10.1002/bimj.202170033
 
5. V. Datsenko, V. Larin, Chem. J. Mold., General, Industrial and Ecological chemistry, 16(1), 88 (2021) 
https://doi.org/10.19261/cjm.2021.793
 
6. E. B. Khobotova, Iu. S. Kaliuzhna, V. V. Datsenko, V. I. Larin, J. of Chem. and Techn. , 29, 312 (2021) 
https://doi.org/10.15421/jchemtech.v29i2.228352
 
7. Е. Khobotova, І. Hraivoronska, Iu. Kaliuzhna, М . Ihnatenko, ChemChemTech, 64 , 89 (2021) 
https://doi.org/10.6060/ivkkt.20216406.6302
 
8. V. V. Datsenko, Е. B. Khobotova, E. A. Belichenko, A. V. Vankevich, J. of Chem. and Techn., 29, 476 (2021) 
https://doi.org/10.15421/jchemtech.v29i4.240173
 
9. V. V. Datsenko, E. B. Khobotova, V. M. Kolodyazhny, D.O. Lisin, Funct. Mater., 29, 462 (2022) http://doi.org/10.15407/fm29.02.462
 
10. O. Makarchuk, T. Dontsova, A. Perekos, A. Skoblic, Y. Svystunov, J. Nanomaterials, 7, ID 8570598 (2017) 
https://doi.org/10.1155/2017/8579598
 
11. Z. Yang, Y. Li, X. Zhang, X. Cui, S. He, H. Liang, A. Ding, Chem. Eng. J., 384, 123319 (2020) 
https://doi.org/10.1016/j.cej.2019.123319
 
12. Z. Zhu, C. Ma, K. Yu, Z. Lu, Z. Liu, Y. Yan, X. Tang, P. Huo, J. Mater. Sci., 55(10), 4358 (2020) 
https://doi.org/10.1007/s10853-019-04170-8
 
13. S. B. Bagherzadeh, M. Kazemeini, N. M. Mahmoodi, J. Molec. Liq., 301, 112427 (2020) 
https://doi.org/10.1016/j.molliq.2019.112427
 
14. S. Jafarinejad, Petroleum Waste Treatment and Pollution Control, 185 (2017) 
https://doi.org/10.1016/B978-0-12-809243-9.00006-7
 
15. O. Zoria, O. Ternovtsev, D. Zoria, M. Walery, J. Ways to Improve Construction Efficiency, 41, 148 (2019) 
https://doi.org/10.32347/2707-501x.2019.41.148-162
 
16. Kanokporn Supong, Parnuwat Usapein, Pirapan Polburee, App. Environ. Res., 14, 42 (2019) 
https://doi.org/10.35762/AER.2019.41.3.4
 
17. JCPDS PDF-1 File [Electronic resource]. ICDD: The Intern. Centre Diffr. Data, (1994). PA, USA.
 
18. J. Rodriguez-Carvajal, T. Roisnel, FullProf.98 and WinPLOTR: New Windows 95/NT Applications for Diffraction. Com. Powder Diffr., Intern. Union Crystallogr., Newsletter, 20 (1998).
 
19. UA 151267. Datsenko V. V., Khobotova E. B., Vankevych O. V. Sposib otrymannia midno-tsynkovoho ferytu dlia ochystky stichnykh vod vid orhanichnykh barvnykiv, 26/2022 (2022). [in Ukrainian]
 
20. UA 151030. Datsenko V. V., Khobotova E. B., Vankevych O. V. Sposib otrymannia ferytnoho kompozytnoho materialu z vlastyvostiamy sorbentu i fotokatalizatora, 21/2022 (2022). [in Ukrainian]
 
21. UA 149385 U. Datsenko V. V., Khobotova E. B., Vankevych O. V. Sposib oderzhannia ferytiv pry ochyshchenni vidpratsovanykh sulfatnykh midno-tsynkovykh rozchyniv, 45 (2021). [in Ukrainian]
 
22. UA 151270. Khobotova E. B., Datsenko V. V., Larin V. I. Sposib syntezu multymetalevoho ferytu z sorbtsiinymy vlastyvostiamy, 26/2022 (2022) [in Ukrainian]
 

 

Current number: