Funct. Mater. 2024; 31 (3): 311-319.

doi:https://doi.org/10.15407/fm31.03.311

Hydrogen peroxide luminescent sensors based on rare-earth doped nanocrystals: sensing mechanisms and biological applications

V.V. Seminko, Ye. I. Neuhodov, P. O. Maksimchuk, N. S. Kavok, S.L. Yefimova

Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky ave., Kharkiv, 61072, Ukraine

Abstract: 

Understanding of the ubiquitous role of reactive oxygen species (ROS) in living cells provided by modern biological studies determined the need for their precise quantification and control. In this review we discuss the new field of luminescent sensors for detection of ROS in water solutions and biological samples. The main attention we put on the hydrogen peroxide (HP) luminescent sensors as HP besides being most common type of ROS is the most stable of all of them. Luminescent HP sensors based on rare-earth doped nanoparticles (NPs) are highly sensitive, photo- and temperature stable, and reversible, and both sensitivity and reversibility of these sensors can be further improved. Within the list of rare-earth doped nanocrystals for HP sensing, the special place we reserved for the nanoparticles with ROS scavenging activity which can decrease the concentration of ROS in living cells visualizing the change of ROS content in the process. Finally, we enlist the existing biological applications of these newly made HP sensors, and discuss the ways of improving their applicability in this field.

Keywords: 
hydrogen peroxide, nanoparticles, sensors, luminescence, redox activity, reactive oxygen species.
References: 
1. B.Halliwell, J.M.Gutteridge, Free radicals in biology and medicine, Oxford University Press, Oxford (2015).
https://doi.org/10.1093/acprof:oso/9780198717478.001.0001
 
2. K.Apel, H.Hirt, Annu. Rev. Plant Biol., 55, 373 (2004)
https://doi.org/10.1146/annurev.arplant.55.031903.141701
 
3. S. G. Rhee, Science., 312, 5782, 1882 (2006)
https://doi.org/10.1126/science.1130481
 
4. J. Lee, N. Koo, D.B. Min, Compr. Rev. Food Sci. F., 3, 1, 21 (2004)
https://doi.org/10.1111/j.1541-4337.2004.tb00058.x
 
5. G.M. Rosen, B.E. Britigan, H.J. Halpern, S. Pou, Free radicals. Biology and detection by spin trapping, Oxford University Press, Oxford (1999).
https://doi.org/10.1093/oso/9780195095050.001.0001
 
6. G.Bačić, I.Spasojević, B.Šećerov, M.Mojović, Spectrochim. Acta A, 69, 5, 1354 (2008).
https://doi.org/10.1016/j.saa.2007.09.047
 
7. J.Wilhelm, R.Vytášek, I.Ošťádalová, L.Vajner, Moll. Cell. Biochem., 328, 1-2, 167 (2009).
https://doi.org/10.1007/s11010-009-0086-5
 
8. W.Chen, S.Cai, Q.Q.Ren, W.Wen, Y.D.Zhao, Analyst, 137, 1, 49 (2012)
https://doi.org/10.1039/C1AN15738H
 
9. S.G. Rhee, T. S.Chang, W.Jeong, D.Kang, Mol. Cells, 29, 6, 539. (2010)
https://doi.org/10.1007/s10059-010-0082-3
 
10. H.Guo, H.Aleyasin, B.C.Dickinson, R.E.Haskew-Layton, R.R.Ratan, Cell Biosci., 4, 64, 1 (2014).
https://doi.org/10.1186/2045-3701-4-64
 
11. Y.Xiao, H.X.Ju, H. Y.Chen, Anal. Chim. Acta, 391, 1, 73(1999)
https://doi.org/10.1016/S0003-2670(99)00196-8
 
12. S. K.Ujjain, A.Das, G.Srivastava, P.Ahuja, M.Roy, A.Arya, M.Das, Biointerphases, 9, 3, 031011 (2014).
https://doi.org/10.1116/1.4890473
 
13. K.Żamojć, M.Zdrowowicz, D.Jacewicz, D.Wyrzykowski, L.Chmurzyński, Crit. Rev. Anal. Chem.,46, 3, 171 (2016).
https://doi.org/10.1080/10408347.2015.1014085
 
14. L.Yuan, W.Lin, Y.Xie, B.Chen, S.Zhu, J. Am. Chem. Soc., 134, 2, 1305 (2012).
https://doi.org/10.1021/ja2100577
 
15. F.Wang, X.Liu, C.H.Lu, I.Willner, ACS Nano, 7, 8, 7278 (2013).
https://doi.org/10.1021/nn402810x
 
16. V.C Özalp, U.S.Zeydanli, A.Lunding, M.Kavruk, M.Tufan Öz, F.Eyidoğan, L.F.Olsend, H.A.Öktem, Analyst, 138, 15, 4255 (2013)
https://doi.org/10.1039/c3an00733b
 
17. M.Hu, J.Tian, H.T.Lu, L.X.Weng, L.H.Wang,Talanta,82, 3, 997 (2010).
https://doi.org/10.1016/j.talanta.2010.06.005
 
18. Y.Song, S.Zhu, S.Xiang, X.Zhao, J.Zhang, H.Zhang, B.Yang, Nanoscale, 6, 9, 4676(2014).
https://doi.org/10.1039/c4nr00029c
 
19. O.S.Wolfbeis, A.Dürkop, M.Wu, Z.Lin, Angew. Chem. Int. Edit., 41, 23, 4495 (2002).
https://doi.org/10.1002/1521-3773(20021202)41:23<4495::AID-ANIE4495>3.0.CO;2-I
 
20. Y.Cui, F.Chen, X.B.Yin, Biosens. Bioelectron., 135, 208 (2019).
https://doi.org/10.1016/j.bios.2019.04.008
 
21. D.Casanova, C.Bouzigues, T.L.Nguyen, R.O Ramodiharilafy, L.Bouzhir-Sima,T.Gacoin, A.Alexandrou,Nat. Nanotechnol.,4, 9, 581 (2009).
https://doi.org/10.1038/nnano.2009.200
 
22. K. Motomiya, K.Sugita, M.Hagiwara, S.Fujihara, ACS Omega, 4, 23, 20353 (2019).
https://doi.org/10.1021/acsomega.9b02915
 
23. A. Pratsinis, G.A. Kelesidis, S. Zuercher, F. Krumeich, S.Bolisetty, R.Mezzenga, G.A.Sotiriou, ACS Nano, 11, 12, 12210 (2017).
https://doi.org/10.1021/acsnano.7b05518
 
24. H.Tan, C.Ma, Q.Li, L.Wang, F.Xu, S.Chen, Y.Song, Analyst, 139, 21, 5516 (2014).
https://doi.org/10.1039/C4AN01152J
 
25. X.Wu, C.Ruan, X.Zhu, L.Zou, R.Wang, G.Li, J.Fluoresc., 10.1007/s10895-024-03659-z (2024).
 
26. Q.Cao, W.Xu, H.Lu, Q.Jia, Microchem. J., 199, 109946 (2024).
https://doi.org/10.1016/j.microc.2024.109946
 
27. X.Wang, D.Zhang, Y.Li, D.Tang, Y.Xiao, Y.Liu, Q.Huo, RSC Adv., 3, 11 , 3623 (2013).
https://doi.org/10.1039/c2ra22492e
 
28. C.Lv, W.Di, Z.Liu, K.Zheng, W.Qin, Analyst,139,18, 4547 (2014).
https://doi.org/10.1039/C4AN00952E
 
29. B.Meesaragandla, A.Verma,V.Bheemireddy, V.Mahalingam,Chemistry Select, 1, 15, 4927 (2016).
https://doi.org/10.1002/slct.201601079
 
30. H.H.Zeng, W.B.Qiu, L.Zhang, R.P.Liang, J.D.Qiu,Anal. Chem., 88, 12, 6342 (2016).
https://doi.org/10.1021/acs.analchem.6b00630
 
31. Y. Malyukin, V.Seminko, P.Maksimchuk, E.Okrushko, O.Sedyh, Y.Zorenko,Opt. Mater., 85, 303 (2018).
https://doi.org/10.1016/j.optmat.2018.08.063
 
32. G.Vinothkumar, I.L.Arun, P.Arunkumar, W.Ahmed, S.Ryu, S.W.Cha, K.S.Babu,J. Mater. Chem. B,6, 41 6559 (2018).
https://doi.org/10.1039/C8TB01643G
 
33. H.Wang, Y.Li, M.Yang, P.Wang, Y.Gu, ACS Appl. Mater. Inter., 11, 7, 7441 (2019).
https://doi.org/10.1021/acsami.8b21549
 
34. L.Liu, S.Wang, B.Zhao, P.Pei, Y.Fan, X.Li, F.Zhang, Angew. Chem. - Ger. Edit., 130, 25, 7640 (2018).
https://doi.org/10.1002/ange.201802889
 
35. P.Maksimchuk, K.Hubenko, M.Knupfer, V.Seminko, V.Klochkov, O.Sorokin, S.Yefimova,. J.Mol.Liq., 400, 124510 (2024).
https://doi.org/10.1016/j.molliq.2024.124510
 
36. D.F.Henning, P.Merkl, C.Yun, F.Iovino, L.Xie, E.Mouzourakis, G.A.Sotiriou, Biosens. Bioelectron., 132, 286 (2019).
https://doi.org/10.1016/j.bios.2019.03.012
 
37. P.C.de Sousa Filho, E.Larquet, D.Dragoe, O.A.Serra, T.Gacoin, ACS Appl. Mater. Inter., 9, 2, 1635 (2017).
https://doi.org/10.1021/acsami.6b14837
 
38. J. R Lakowicz, Principles of fluorescence spectroscopy, Springer US, MA, Boston (2006).
https://doi.org/10.1007/978-0-387-46312-4
 
39. T.Pirmohamed, J.M.Dowding, S.Singh, B.Wasserman, E.Heckert, A.S.Karakoti,W.T.Self, Chem. Commun.,46, 16, 2736 (2010).
https://doi.org/10.1039/b922024k
 
40. E.G, Heckert, A.S.Karakoti, S.Seal,W.T.Self, Biomaterials, 29, 18, 2705 (2008).
https://doi.org/10.1016/j.biomaterials.2008.03.014
 
41. T.Moon, S.T.Hwang, D.R.Jung, D.Son, C.Kim, J.Kim, B Park, J. Phys. Chem. C, 111, 11, 4164 (2007).
https://doi.org/10.1021/jp067217l
 
42. V.Seminko, P.Maksimchuk, V.Klochkov, Y.Neuhodov, L.Demchenko, S.Yefimova, J. Phys. Chem. C, 127, 22, 10662 (2023).
https://doi.org/10.1021/acs.jpcc.3c02637
 
43. W.Gao, J.Li, X.Zhou, Z.Zhang, Y.Ma, Y.Qu,J. Mater. Chem. C,2, 41, 8729 (2014).
https://doi.org/10.1039/C4TC01597E
 
44. I.Celardo, J.Z.Pedersen, E.Traversa, L.Ghibelli, Nanoscale, 3, 4, 1411 (2011).
https://doi.org/10.1039/c0nr00875c
 
45. V.Seminko, P.Maksimchuk, G.Grygorova, E.Okrushko, O.Avrunin, V.Semenets, Y.Malyukin, J. Phys. Chem. C, 125, 8, 4743 (2021).
https://doi.org/10.1021/acs.jpcc.1c00382
 
46. M.Wu, Z.Lin,O.S.Wolfbeis, Anal. Biochem., 320, 1, 129 (2003).
https://doi.org/10.1016/S0003-2697(03)00356-7
 
47. W.Wei, H.Wang,C.Jiang, Spectrochim Acta A, 70, 2, 389 (2008).
https://doi.org/10.1016/j.saa.2007.10.046
 
48. B.Liu, Z.Sun, P.J.J Huang, J.Liu,J. Am. Chem. Soc.,137, 3, 1290 (2015).
https://doi.org/10.1021/ja511444e
 
49. D.Jampaiah, T. Srinivasa Reddy, A.E. Kandjani, P.R.Selvakannan,Y.M. Sabri, V.E.Coyle, R.Shuklab, S. K. Bhargava, J. Mater. Chem. B, 4, 22, 3874 (2016)
https://doi.org/10.1039/C6TB00422A
 
50. Z.Yang, Y.Liu, C.Lu, G.Yue, Y.Wang, H.Rao, X.Wang, J. Alloy. Compd., 862, 158323.(2021).
https://doi.org/10.1016/j.jallcom.2020.158323
 

Current number: