Funct. Mater. 2024; 31 (3): 320-326.

doi:https://doi.org/10.15407/fm31.03.320

Optical and structural characteristics of Sm crystals grown by HDC method in Ar+(CO, H2) atmosphere

S. Nizhankovskyi, S. Kryvonogov, A. Kozlovskyi, O. Lukienko, S. Skorik, A.Romanenko, I. Pritula

Institute for Single Crystals, NAS of Ukraine, STC "Institute for Single Crystals" NAS of Ukraine, Kharkiv, 60 Nauki Ave. Ukraine

Abstract: 

Yttrium-aluminum garnet crystals doped by samarium ions (YAG:Sm) were grown by the method of horizontal directional crystallization in molybdenum crucible in reducing carbon-containing medium Ar+(CO, H2). Studied were the content and distribution of Sm3+ ions, the spectral, structural characteristics and the main types of defects of these single crystals. There was shown the possibility to obtain YAG:Sm crystals of optical quality with the concentration of samarium ions up to 7. 4 at. %, as well as the coefficient of linear optical absorption equal to 0.015 cm-1 and 6 cm-1 for the pumping and generation wavelengths of YAG:Nd crystals, respectively. Established was the existence of additional absorption bands in the UV and visible ranges caused by the reducing crystal growth conditions and formation of F+- color centers.

Keywords: 
samarium, yttrium-aluminum garnet, molybdenum crucible, horizontal directional crystallization
References: 
1. A. Lupei, V. Lupei, C. Gheorghe, A. Ikesue, Romanian Reports in Physics, 63, 817, (2011). https://rrp.nipne.ro/2011_63_3/art18Lupei.pdf
 
2. R. Hub, R. Wilhelm, C. Kolleck et al., Opt. Express 18, 13094, (2010).
https://doi.org/10.1364/OE.18.013094
 
3. H. Yagi, J.F. Bisson, K. Ueda, T. Yanagitani, J. Lumin. 121, 88 (2006).
https://doi.org/10.1016/j.jlumin.2005.10.006
 
4. H.-F. Li, J.-F. Han, G.-L. Yang, X.-G. Mo., Journal of Synthetic Crystals, 42, 1305 (2013). http://rgjtxb.jtxb.cn/EN/Y2013/V42/I7/1305
 
5. M. Němec, J. Šulc, H. Jelínková et al., In: Proc. SPIE 11259, Solid State Lasers XXIX: Technology and Devices, 1125921 (2020).
 
6. A.D. Timoshenko, O.O. Matvienko, A.G. Doroshenko et al., Ceram. Int. 49, 7524 (2023).
https://doi.org/10.1016/j.ceramint.2022.10.257
 
7. L.A. Oganesyan, V.Ya. Khaimov-Mal′kov, J. Cryst. Growth 52, 530 (1981).
https://doi.org/10.1016/0022-0248(81)90334-1
 
8. A. Ya. Dan′ko, N.S. Sidelnikova, G.T. Adonkin et al., Funct. Mater. 8, 462 (2001).
 
9. S. Nizhankovskyi, S.Kryvonohov, N. Sidelnikova, Cryst. Growth Des., 22, 7153 (2022).
https://doi.org/10.1021/acs.cgd.2c00822
 
10. S. V. Nizhankovsky, A. Ya. Dan′ko, Yu. V. Zorenko et al., Physics of the Solid State, 53 ,1, (2011)
https://doi.org/10.1134/S1063783411010215
 
11. S.V. Nizhankovskyi, O.O. Vovk, A.A. Kozlovskyi et al., Opt. Mater., 141, 113980 (2023)
https://doi.org/10.1016/j.optmat.2023.113980
 
12. A. Ya. Dan′ko, N. S. Sidelnikova, G. T. Adonkin et al., Funct. Mater., 10, 217, (2003). http://functmaterials.org.ua/contents/10-2/FM102-28.pdf
 
13. V. F.Tkachenko , M. A. Rom , A .A. Babichenko, Instruments and Experimental Techniques, 2, 277, (1992).
 
14. S. Balakumar, H.C. Zeng, J. Cryst. Growth, 197, 186, (1999). https://doi.org/10.1016/S0022-0248(98)00924-5
https://doi.org/10.1016/S0022-0248(98)00924-5
 
15. Deng Peizhen, Qiao Jingwen, J. Cryst. Growth, 82, 579, (1987).
https://doi.org/10.1016/S0022-0248(87)80001-5
 
16. J.W. Matthews, E. Klokholm, V. Sadagopan et al., Acta Metallurgica, 21, 203, (1973).
https://doi.org/10.1016/0001-6160(73)90005-9
 
17. E. Nes, Scripta Met., 7, 705, (1973)
https://doi.org/10.1016/0036-9748(73)90117-8
 
18. J. Chen, T. C. Lu, Y.Xu et al., J. Phys. Condens. Matter, 20, 325212, (2008).
https://doi.org/10.1088/0953-8984/20/32/325212
 
19. M. Malinowski, R. Wolski, Z. Frukacz et al., J. Appl. Spectrosc., 62, 840, (1995)
https://doi.org/10.1007/BF02606647
 

Current number: