Funct. Mater. 2024; 31 (3): 336-340.
Substitution of praseodymium by lead in Pb8Na2(PO4)6 at 850°C
College of Science, Al-Karkh University of Science, Hayfa Street, Baghdad 10001, Iraq
This study analyzed the substitution of lead ions with praseodymium ions in sodium lead apatite. Two techniques, X-ray diffraction analysis and infrared spectroscopy, were used to examine the substitutions. The examination was based on the equation: 2Pb2+ + ν -> 2Pr3+ + O2–. The results were solid solutions with the composition Pb8-xNa2Prx(PO4)6Ox/2 (0.0 ≤ x ≤ 1.0). Lead sodium apatite samples produced at 850ºC ranged from x=0.0 to x=0.6. The following methods were used to determine the limits of the Pb substitute for Pr in lead sodium apatite: the method for determining the dependency of unit cell parameters and the vanishing phase method.
1. E. Fiume, G. Magnaterra, A. Rahdar, E. Verné, F. Baino, Ceram. 4 (2021) 542-563. https://doi.org/10.3390/ceramics4040039 |
||||
2. S. Deng, Z. Lin, H. Tang, S. Ullah, Y. Bi, J. Mater. Res. 34, 2796, (2019) https://doi.org/10.1557/jmr.2019.119 |
||||
3. S. L. Iconaru, M. Motelica-Heino, R. Guegan, M. Beuran, A. Costescu, D. Predoi, J. Mater. 11, 2204, (2018). https://doi.org/10.3390/ma11112204 |
||||
4. Y. Xin, T. Shirai, Sci. Rep. 11, 7512, (2021). https://doi.org/10.1038/s41598-021-86992-8 |
||||
5. N. Ebadipour, S. Paul, B. Katryniok, F. Dumeignil, Catalysts. 11, 1 (2021) https://doi.org/10.3390/catal11101247 |
||||
6. S. M. Antao, I. Dhaliwal, J. Synchrotron Rad. 28, 214 (2018) . https://doi.org/10.1107/S1600577517014217 |
||||
7. M. R. Khademolhosseini, I. Mobasherpour, D. Ghahreman, Chem. Chem. Technol. 12, 372 (2018). https://doi.org/10.23939/chcht12.03.372 |
||||
8. Y. Zhu, B. Huang, Z. Zhu, H. Liu, Y. Huang, X. Zhao, M. Liang, Geochem. Trans. 17, 1, (2016). https://doi.org/10.1186/s12932-016-0034-8 |
||||
9. A. Giera, M. Manecki, T. Bajda, J. Rakovan, M. Kwaśniak-Kominek, T. Marchlewski, Acta A Mol. Biomol. Spectrosc. 152, 370 (2016). https://doi.org/10.1016/j.saa.2015.07.015 |
||||
10. J. D. Hopwood, G. R. Derrick, D. R. Brown, C. D. Newman, J. Haley, R. Kershaw, M. Collinge , J. Chem. 2016, 1, (2016). https://doi.org/10.1155/2016/9074062 |
||||
11. E. N. Bulanov, S. S. Petrov, A. V. Knyazev, J. Chem. 45, 1444, (2021). https://doi.org/10.3906/kim-2102-5 |
||||
12. N. Sboui, H. Agougui, M. Jabli, K. Boughzala, Inorg. Chem. Commun. 142, 109628 (2022). https://doi.org/10.1016/j.inoche.2022.109628 |
||||
13. Mohammed A. B. Abdul Jabar, J. Science 32, 121 (2023). https://doi.org/10.33899/rjs.2023.177294 |
||||
14. Mohammed A. B. Abdul Jabar, Chem. Chem. Technol. 17, 719 (2023). https://doi.org/10.23939/chcht17.04.719 |
||||
15. L. I. Ardanova, E. I. Get′man, S. V. Radio, I. M. Hill, A. V. Ignatov, Key Eng. Mater. 865, 37(2020). https://doi.org/10.4028/www.scientific.net/kem.865.37 https://doi.org/10.4028/www.scientific.net/KEM.865.37 |
||||
16. P. Pénélope et al., Front. Chem. 10 (2022). https://doi.org/10.3389/fchem.2022.1085868 https://doi.org/10.3389/fchem.2022.1085868 |
||||
17. M. Weil, Minerals 11, 1156 (1-16) (2021). https://doi.org/10.3390/min11111156 https://doi.org/10.3390/min11111156 |
||||
18. J. Topolska, T. Bajda, B. Puzio, M. Manecki, G. Kozub-Budzyń, Geological Quarterly 63, 721, (2019). https://doi.org/10.7306/gq.1502 |
||||
19. Mohammed A. B. Abdul Jabar, A. V. Ignatov, J. Chem. Soc. Pak. 42, 363, (2020). https://jcsp.org.pk/issueDetail.aspx?aid=9c56ea37-f765-416d-b62f-9ba5f29... | ||||
20. N. T. Phuong, C. T. Hong, N. T. Thuy, N. T. Xuyen, N. T. et all, Research on the adsorption of Pb2+ by apatite ore and purified apatite ore, Vietnam J. Sci. Technol. 59, 745, (2021). https://doi.org/10.15625/2525-2518/59/6/16185 |
||||
21. E. A. Abdel-Aal, H. M. Abdel-Ghafar, D. El-Sayed, E. M. Ewais, Int. J. Innov. Sci. Technol. 2, 35 (2022). https://doi.org/10.21608/ijmti.2022.115060.1044 |
||||
22. J. Rodriguez-Carvajal, Fullprof. 2k, Computer program, (2016). | ||||
23. K. Brandenburg, H. Putz, Match software for phase identification from powder diffraction data, Computer program, (2014). | ||||
24. T. Roisnel, Materials Science Forum, Proceedings of the Seventh European Powder Diffraction Conference (EPDIC 7), 378-381, 118, (2000). https://doi.org/10.4028/www.scientific.net/MSF.378-381.118 |
||||
25. Mohammed A. B. Abdul Jabar, E. I. Get′man, A. V. Ignatov, Funct. Mater. 25, 713 (2018). https://doi.org/10.15407/fm25.04.713 |
||||
26. W. Ahmed, T. Xu, M. Mahmood, A. Núñez-Delgado, S. Ali, et all, Environ Res. 214, 113827 (2022). https://doi.org/10.1016/j.envres.2022.113827 |
||||
27. Mohammed A. B. Abdul Jabar, Nanotechnologies Journal 17, 343, (2019). https://doi.org/10.15407/nnn.17.02.343 |
||||
28. N. He, L. Hu, Z. He, M. Li, Y. Huang, J. Hazard. Mater. 422, 126902 (2022). https://doi.org/10.1016/j.jhazmat.2021.126902 |
||||