Funct. Mater. 2024; 31 (3): 336-340.

doi:https://doi.org/10.15407/fm31.03.336

Substitution of praseodymium by lead in Pb8Na2(PO4)6 at 850°C

Mohammed A. B. Abdul Jabar1, A. V. Ignatov2, A. O. Zhegailo2

1College of Science, Al-Karkh University of Science, Hayfa Street, Baghdad 10001, Iraq 2Department of Inorganic Chemistry, Donetsk National University, Donetsk 83001, Ukraine

Abstract: 

This study analyzed the substitution of lead ions with praseodymium ions in sodium lead apatite. Two techniques, X-ray diffraction analysis and infrared spectroscopy, were used to examine the substitutions. The examination was based on the equation: 2Pb2+ + ν -> 2Pr3+ + O2–. The results were solid solutions with the composition Pb8-xNa2Prx(PO4)6Ox/2 (0.0 ≤ x ≤ 1.0). Lead sodium apatite samples produced at 850ºC ranged from x=0.0 to x=0.6. The following methods were used to determine the limits of the Pb substitute for Pr in lead sodium apatite: the method for determining the dependency of unit cell parameters and the vanishing phase method.

Keywords: 
apatite structure, solid solutions, lead, praseodymium, sodium.
References: 
1. E. Fiume, G. Magnaterra, A. Rahdar, E. Verné, F. Baino, Ceram. 4 (2021) 542-563. 
https://doi.org/10.3390/ceramics4040039
 
2. S. Deng, Z. Lin, H. Tang, S. Ullah, Y. Bi, J. Mater. Res. 34, 2796, (2019) 
https://doi.org/10.1557/jmr.2019.119
 
3. S. L. Iconaru, M. Motelica-Heino, R. Guegan, M. Beuran, A. Costescu, D. Predoi, J. Mater. 11, 2204, (2018). 
https://doi.org/10.3390/ma11112204
 
4. Y. Xin, T. Shirai, Sci. Rep. 11, 7512, (2021). 
https://doi.org/10.1038/s41598-021-86992-8
 
5. N. Ebadipour, S. Paul, B. Katryniok, F. Dumeignil, Catalysts. 11, 1 (2021) 
https://doi.org/10.3390/catal11101247
 
6. S. M. Antao, I. Dhaliwal, J. Synchrotron Rad. 28, 214 (2018) . 
https://doi.org/10.1107/S1600577517014217
 
7. M. R. Khademolhosseini, I. Mobasherpour, D. Ghahreman, Chem. Chem. Technol. 12, 372 (2018). 
https://doi.org/10.23939/chcht12.03.372
 
8. Y. Zhu, B. Huang, Z. Zhu, H. Liu, Y. Huang, X. Zhao, M. Liang, Geochem. Trans. 17, 1, (2016). 
https://doi.org/10.1186/s12932-016-0034-8
 
9. A. Giera, M. Manecki, T. Bajda, J. Rakovan, M. Kwaśniak-Kominek, T. Marchlewski, Acta A Mol. Biomol. Spectrosc. 152, 370 (2016). 
https://doi.org/10.1016/j.saa.2015.07.015
 
10. J. D. Hopwood, G. R. Derrick, D. R. Brown, C. D. Newman, J. Haley, R. Kershaw, M. Collinge , J. Chem. 2016, 1, (2016). 
https://doi.org/10.1155/2016/9074062
 
11. E. N. Bulanov, S. S. Petrov, A. V. Knyazev, J. Chem. 45, 1444, (2021). 
https://doi.org/10.3906/kim-2102-5
 
12. N. Sboui, H. Agougui, M. Jabli, K. Boughzala, Inorg. Chem. Commun. 142, 109628 (2022). 
https://doi.org/10.1016/j.inoche.2022.109628
 
13. Mohammed A. B. Abdul Jabar, J. Science 32, 121 (2023). 
https://doi.org/10.33899/rjs.2023.177294
 
14. Mohammed A. B. Abdul Jabar, Chem. Chem. Technol. 17, 719 (2023). 
https://doi.org/10.23939/chcht17.04.719
 
15. L. I. Ardanova, E. I. Get′man, S. V. Radio, I. M. Hill, A. V. Ignatov, Key Eng. Mater. 865, 37(2020). https://doi.org/10.4028/www.scientific.net/kem.865.37
https://doi.org/10.4028/www.scientific.net/KEM.865.37
 
16. P. Pénélope et al., Front. Chem. 10 (2022). https://doi.org/10.3389/fchem.2022.1085868
https://doi.org/10.3389/fchem.2022.1085868
 
17. M. Weil, Minerals 11, 1156 (1-16) (2021). https://doi.org/10.3390/min11111156
https://doi.org/10.3390/min11111156
 
18. J. Topolska, T. Bajda, B. Puzio, M. Manecki, G. Kozub-Budzyń, Geological Quarterly 63, 721, (2019).
https://doi.org/10.7306/gq.1502
 
19. Mohammed A. B. Abdul Jabar, A. V. Ignatov, J. Chem. Soc. Pak. 42, 363, (2020). https://jcsp.org.pk/issueDetail.aspx?aid=9c56ea37-f765-416d-b62f-9ba5f29...
 
20. N. T. Phuong, C. T. Hong, N. T. Thuy, N. T. Xuyen, N. T. et all, Research on the adsorption of Pb2+ by apatite ore and purified apatite ore, Vietnam J. Sci. Technol. 59, 745, (2021). 
https://doi.org/10.15625/2525-2518/59/6/16185
 
21. E. A. Abdel-Aal, H. M. Abdel-Ghafar, D. El-Sayed, E. M. Ewais, Int. J. Innov. Sci. Technol. 2, 35 (2022). 
https://doi.org/10.21608/ijmti.2022.115060.1044
 
22. J. Rodriguez-Carvajal, Fullprof. 2k, Computer program, (2016).
 
23. K. Brandenburg, H. Putz, Match software for phase identification from powder diffraction data, Computer program, (2014).
 
24. T. Roisnel, Materials Science Forum, Proceedings of the Seventh European Powder Diffraction Conference (EPDIC 7), 378-381, 118, (2000).
https://doi.org/10.4028/www.scientific.net/MSF.378-381.118
 
25. Mohammed A. B. Abdul Jabar, E. I. Get′man, A. V. Ignatov, Funct. Mater. 25, 713 (2018). 
https://doi.org/10.15407/fm25.04.713
 
26. W. Ahmed, T. Xu, M. Mahmood, A. Núñez-Delgado, S. Ali, et all, Environ Res. 214, 113827 (2022). 
https://doi.org/10.1016/j.envres.2022.113827
 
27. Mohammed A. B. Abdul Jabar, Nanotechnologies Journal 17, 343, (2019). 
https://doi.org/10.15407/nnn.17.02.343
 
28. N. He, L. Hu, Z. He, M. Li, Y. Huang, J. Hazard. Mater. 422, 126902 (2022). 
https://doi.org/10.1016/j.jhazmat.2021.126902
 

Current number: