Funct. Mater. 2024; 31 (3): 351-358.

doi:https://doi.org/10.15407/fm31.03.351

Composite material based on zirconium dioxide partially stabilised with cerium oxide and aluminium oxide for bioengineering applications

E.S.Hevorkian1,2,3, О.M.Morozova2, V.P.Nerubatskyi2, V.O.Chyshkala1, D.S.Sofronov4, S.Moya5, A.Abarrategi5,6, B.Arnaiz5, M.A.Bondarenko7, R.V.Vovk1,2

1V.N.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
2Ukrainian State University of Railway Transport, 7 Feierbakh Sq., 61050 Kharkiv, Ukraine
3University of Life Sciences in Lublin, 13 Akademicka, 20-950 Lublin, Poland
4SSI "Institute for Single Crystals" NAS of Ukraine, "Institute for Single Crystals" NAS of Ukraine, 60 Nauky ave., 61072 Kharkiv, Ukraine
5CIC biomaGUNE, 182, Paseo Miramón, Donostia, 20014 San Sebastián, Spain
6IKERBASQUE, Basque Foundation for Science, 5 Plaza Euskadi, 48009 Bilbao, Spain
7Kharkiv National Medical University, 4 Nauky ave., 61022 Kharkiv, Ukraine

Abstract: 

The work presents the results of research of compacted ceramic systems based on zirconium dioxide partially stabilized with cerium oxide and aluminium oxide, with additives of silicon carbide and silica; these materials could potentially be used as surgical implants or devices. The composite materials ZrO2–5wt.%CeO2–10wt.%SiC have shown higher biocompatibility with the human osteosarcoma cell line MG-63 than samples of compositions Al2O3–20wt.%SiO2–10wt.%ZrO2 and ZrO2–5wt.%CeO2. Samples demonstrated hydrophilic behavior according to contact angle measurements. Zeta potential experiments showed that the nanoparticles were negatively charged in all cases in this study. Since the samples compacted in the temperature range of 1300–1600°C are biocompatible with MG-63 cells, zirconia-based ceramics compacted at temperatures higher 1300°C may improve implant osseointegration as a result of further research.

Keywords: 
cell viability, composite, electroconsolidation, implants, zirconium dioxide.
References: 

1. E.L.Pang, G.B.Olson, C.A.Schuh, Acta Materialia, 213, 116972 (2021)
https://doi.org/10.1016/j.actamat.2021.116972.

2.N.Knoblauch, P.A.Mechnich, Crystals (Basel), 11(8), 885 (2021).
https://doi.org/10.3390/cryst11080885.

3.R.C.O′Brien, R.M.Ambrosi, N.P.Bannister, et al., Journal of Nuclear Materials, 393, 108 (2009). https://doi.org/10.1016/j.jnucmat.2009.05.012.

4. R.Bacani, T.S.Martins, M.C.Fantini, D.G.Lamas, Journal of Alloys and Compounds, 671, 396 (2016). https://doi.org/10.1016/j.jallcom.2016.01.213.

5. Z.Krzysiak, E.Gevorkyan, V.Nerubatskyi, M.Rucki, V.Chyshkala, J.Caban, T.Mazur, Materials, 15(17), 6073 (2022).
https://doi.org/10.3390/ma15176073.

6. L.Lan. S.Chen, Y.Sao, M.Gong, Y.Chen, Catalysis Science&Techology, 5(9), 4488 (2015). https://doi.org/10.1039/C5CY00612K.

7. T.Jiang, S.Yuchang, H.Te, Y.Qiushan, T.Rabigul, L.Quan, X.Yunze, Solid State Ionics, 292, 22 (2016). https://doi.org/10.1016/j.ssi.2016.03.018.

8. O.Y.Kurapova, S.M.Shugurov, E.A.Vasil′eva, D.A.Savelev, V.G.Konakov, S.I.Lopatin, Ceramics International, 8(47), 11072 (2021).
https://doi.org/10.1016/j.ceramint.2020.12.230.

9. Y.Dong, Z.Liu, L.Pang, Y.Han, S.Yao, X.Wang, Physica B: Condensed Matter, 612 (2021). https://doi.org/10.1016/j.physb.2021.412972.

10.B.Dou, D.Yang, T.Kang, Y.Xu, Q.Hao, F.Bin, X.Xu, Carbon Resources Conversion, 4, 55 (2021). https://doi.org/10.1016/j.crcon.2021.01.007.

11. J.Wang, J.Sun, Q.Jing, B.Liu, H.Zhang, Y.Yongsheng, et al,. Journal of the European Ceramic Society, 38(7), 2841 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.02.019.

12. O.Y.Kurapova, S.N.Golubev, A.G.Glukharev, V.G.Konakov, Refractories and Industrial Ceramics, 61(1), 112 (2020).
https://doi.org/10.1007/s11148-020-00440-0.

13. J.Arfaoui, A.Ghorbel, C.Petitto, G.Delahay, Journal of Industrial and Engineering Chemistry, 95, 182 (2021). https://doi.org/10.1016/j.jiec.2020.12.021.

14. T.K.Phung, L.P.Hernández, G.Busca, Applied Catalysis A: General, 489, 180 (2015). https://doi.org/10.1016/j.apcata.2014.10.025.

15. E.Gevorkyan, V.Nerubatskyi, V.Chyshkala, O.Morozova, Eastern-European Journal of Enterprise Technologies, 5(12(113)), 6 (2021).
https://doi.org/10.15587/1729-4061.2021.242503.

16. E.Gevorkyan, V.Nerubatskyi, V.Chyshkala, Y.Gutsalenko, O.Morozova, Eastern-European Journal of Enterprise Technologies, 6(12(114)), 40 (2021).
https://doi.org/10.15587/1729-4061.2021.245938.

17. M.Tokita, Ceramics, 4, 160 (2021).
https://doi.org/10.3390/ceramics4020014.

18. E.S.Gevorkyan, D.S.Sofronov, V.P.Nerubatskyi, V.O.Chyshkala, O.M.Morozova, O.M.Lebedynskyi, P.V.Mateychenko, Journal of Superhard Materials, 45(1), 31 (2023). https://doi.org/10.3103/S1063457623010057.

19. T.Tite, A.C.Popa, L.Balescu, I.Bogdan, I.Pasuk, J.Ferreira, G.Stan, Materials, 11(11) (2018). https://doi.org/10.3390/ma11112081.

20. Y.Al-Mahdy, H.Eltayeb, Al-Azhar Journal of Dentistry, 5:1(11), 89 (2018). https://doi.org/10.21608/adjg.2018.7996.

21. K.N.Ho, L.W.Chen, T.F.Kuo, K.S.Chen, S.Y.Lee, S.F.Wang, Journal of Dental Sciences, 18(1), 73 (2023). https://doi.org/10.1016/j.jds.2022.06.007.

22. E.S.Gevorkyan, V.P.Nerubatskyi, R.V.Vovk, V.O.Chyshkala, M.V.Kislitsa, Journal of Superhard Materials, 44(5), 339 (2022).
https://doi.org/10.3103/S1063457622050033.

23.V.P.Nerubatskyi, R.V.Vovk, M.Gzik-Szumiata, E.S.Gevorkyan, Low Temperature Physics, 49(4), 540 (2023). https://doi.org/10.1063/10.0017596.

Current number: