Funct. Mater. 2024; 31 (3): 359-370.

doi:https://doi.org/10.15407/fm31.03.359

Flexible heat-conductive polyimide composite materials

V. Borshchov1, O. Listratenko1, M. Slipchenko2, M. Protsenko1, I. Tymchuk1, O. Kravchenko1, I. Borshchov1

1LLC "Research and Production Enterprise "LTU", 3 Novgorodska Str., 61145, Kharkiv,
2Institute for Scintillation Materials National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072, Kharkiv,Ukraine.

Abstract: 

In the paper results of development and study of thermally conductive polyimide composite materials based on binders from solution of aromatic polyamic acid Pyre ML RC 5069 and dispersed fillers from powders of aluminium nitride particles of micron and nano sizes are described. Technological schemes of manufacturing were chosen, structural modelling and calculating effective thermal conductivity of polyimide composites using COMSOL MULTIPHYSICS software package were carried out.Methods of manufacturing thin thermally conductive micro- and nanostructured PI composite polyimide coatings and layers and single-sided composite aluminium-polyimine varnish-foil dielectrics with thermal conductivity in the range of 1.0-2.0W/(m·K) have been developed. Main chemical, mechanical, electrical and thermal properties of experimental samples of single-sided thermally conductive aluminium-polyimide varnish-foil dielectrics were investigated.

Keywords: 
thermally conductive polyimide composite materials; structural 3D models; thermally conductive aluminium-polyimide foil dielectrics; test quality structures.
References: 
1. E.A. Nikolaeva [et al.], Informacionno-technologicheskij vestnik. 15 (1): 156, 2018
https://doi.org/10.21499/2409-1650-2018-1-156-168
 
2. Wang, X. Nanoscale Res. Lett., 7, 662, 2012.
https://doi.org/10.1186/1556-276X-7-662
 
3. V.M. Borshchov [et al.], Funct. Mater., 29 (1), 20, 2022.
   https://doi.org/10.15407/fm29.01.20
 
4. V.M. Borshchov [et al.], Radiotekhnika: All-Ukr. Sci. Interdep. Mag. 210, 150, 2022
https://doi.org/10.30837/rt.2022.3.210.12
 
5. V.M. Borshchov [et al.], Radiotekhnika: All-Ukr. Sci. Interdep. Mag., 212, 115, 2023
https://doi.org/10.30837/rt.2023.1.212.10
 
6. Heat-conducting polyimide film DuPont™ Kapton® MT,
https://www.dupont.com/products/kapton-mt.html, official website (access date 05/04/2024).
 
7. Heat-conducting polyimide film DuPont™ Kapton® MT+,
https://www.dupont.com/products/kapton-mt-plus.html. , official website (access date 05/04/2024).
 
8.Heat-conducting polyimide film KYPI- MT (China), https://www.kying.com , official website (access date 05/04/2024).
 
9. Pyre-ML® RC-5069 Technical Datasheet,Supplied by Industrial Summit Technology , official website (access date 05/04/2024).
 
10. Polyimide film DuPont™ Kapton® HN, https://www.dupont.com/products/kapton-hn.html , official website (access date 05/04/2024).
 
11. A. Shcherbyna [et al.], Electronics, science, technology, business.,7. 106, 2019
 
12. V.A. Mikheev, Dis. Ph.D. (2018).
 
13. V.M. Borshchov [et al.], Radiotekhnika: All-Ukr. Sci. Interdep. Mag.,211. 133, 2022. [in Ukrainian]
https://doi.org/10.30837/rt.2022.4.211.10
 
14. V.S. Stepanov [et al.], St. Petersbg. State Polytech. Univ. J.: Phys. Math. 11 (4), 85, 2018.
 
15. Masashi Haruki, JCEJ, 54, , 186, 2021.
https://doi.org/10.1252/jcej.20we136
 
16. Т. Tanaka [et al.], JICEE, 2, 1, 90, 2012.

Current number: