Funct. Mater. 2024; 31 (3): 371-376.
Densification, microstructure and hardness of middle entropy ceramics based on transition metals diboride
1 Frantsevich Institute for Problems in Materials Science, 3 Krzhizhanovsky St., 03142, Kyiv, Ukraine
2 National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Peremogy Ave. 37, 03056 Kyiv, Ukraine
3Paton Electric Welding Institute of the NAS of Ukraine, 03150 Kyiv, Ukraine
4G. V. Kurdyumov Institute of Metal Physics of the NAS of Ukraine, NanoMedTech LLC, Kyiv, Ukraine
This article discusses the production and characterization of solid solutions based on single diboride phases, specifically TiB2, ZrB2, HfB2, NbB2, and TaB2. These high-entropy ceramics TiB2 denoted as (Ti, Zr, Hf)B2, (Ti, Zr, Nb)B2, and (Ti, Zr, Ta)B2, were prepared through a meticulous process involving wet ball milling, hot pressing, and subsequent analysis. Microstructural analysis was conducted using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The as-sintered ceramics had a complex microstructure, including solid solution − gray phase, (Hf, Zr)B2− white phase, and a dark phase formed during the polishing procedure. Chemical analysis using energy dispersive spectroscopy (EDS) indicated the formation of the (Ti0.33Zr0.33Hf0.34)B2 solid solution in (Ti, Zr, Hf)B2 ceramics. However, in the case of (Ti, Zr, Nb)B2 and (Ti, Zr, Ta)B2, inhomogeneous areas rich in Nb and Ta were observed, indicating the difficulty in achieving complete solubility in the AlB2 structure. Hardness was measured at different indentation loads, and a decrease in hardness was revealed at higher loads. However, the high hardness observed at lower loads (200 H) for (Ti, Zr, Hf)B2 solid solutions suggested a cocktail effect, similar to that observed in high-entropy metal alloys.
1. V.E. Álvarez-Montaño, M. Kumar, S. Sharma, R. Kumar Chourasia, P. Kumar, J.M. Siqueiros, O. Raymond Herrera, Mater Lett 349 (2023) https://doi.org/10.1016/j.matlet.2023.134785 |
||||
2. Nam, Prediction of mechanical properties of high-entropy ceramics by deep learning with compositional descriptors, Mater Today Commun 35 (2023) https://doi.org/10.1016/j.mtcomm.2023.105949 |
||||
3. M. Anandkumar, E. Trofimov, J Alloys Compd 960 (2023) https://doi.org/10.1016/j.jallcom.2023.170690 |
||||
4. Q. Zhou, F. Xu, C. Gao, W. Zhao, L. Shu, X. Shi, M.F. Yuen, D. Zuo, Ceram Int 49 (2023) https://doi.org/10.1016/j.ceramint.2023.05.147 |
||||
5. Y. Zhang, Z. Bin Jiang, S.K. Sun, W.M. Guo, Q.S. Chen, J.X. Qiu, K. Plucknett, H.T. Lin, J Eur Ceram Soc 39 (2019) https://doi.org/10.1016/j.jeurceramsoc.2019.05.017 |
||||
6. S. Kavak, K.G. Bayrak, M. Mansoor, M. Kaba, E. Ayas, Ö. Balcı-Çağıran, B. Derin, M.L. Öveçoğlu, D. Ağaoğulları, J Eur Ceram Soc 43 (2023) https://doi.org/10.1016/j.jeurceramsoc.2022.10.047 |
||||
7. An original source: S. Akrami, P. Edalati, M. Fuji, K. Edalati, High-entropy ceramics: Review of principles, production and applications, Materials Science and Engineering: R: Reports 146 (2021) https://doi.org/10.1016/j.mser.2021.100644 |
||||
8. R.Z. Zhang, M.J. Reece, High-Entropy Ceramics, Encyclopedia of Materials: Metals and Alloys (2022) https://doi.org/10.1016/B978-0-12-819726-4.00070-3 |
||||
9. R.F. Guo, H.R. Mao, P. Shen, J Eur Ceram Soc 43 (2023) | ||||
10. P.H. Mayrhofer, A. Kirnbauer, P. Ertelthaler, C.M. Koller, Scr Mater 149 (2018) https://doi.org/10.1016/j.scriptamat.2018.02.008 |
||||
11. A. Nisar, M.M. Khan, S. Bajpai, K. Balani, Int J Refract Metals Hard Mater 81 (2019) https://doi.org/10.1016/j.ijrmhm.2019.02.014 |
||||
12. F. Monteverde, F. Saraga, M. Gaboardi, J.R. Plaisier, J Eur Ceram Soc 41 (2021) https://doi.org/10.1016/j.jeurceramsoc.2021.05.053 |
||||
13. L. Feng, F. Monteverde, W.G. Fahrenholtz, G.E. Hilmas, Scr Mater 199 (2021). https://doi.org/10.1016/j.scriptamat.2021.113855 |
||||
14. D. Demirskyi, T.S. Suzuki, K. Yoshimi, O. Vasylkiv, J.Ceramic Society of Japan 128 (2020) | ||||
15. J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N. Zhou, K. Vecchio, J. Luo, Sci Rep 6 (2016) https://doi.org/10.1038/srep37946 |
||||
16. D. Liu, T. Wen, B. Ye, Y. Chu, Scr Mater 167 (2019) https://doi.org/10.1016/j.scriptamat.2019.03.038 |
||||
17. L. Feng, W.G. Fahrenholtz, G.E. Hilmas, Journal of the American Ceramic Society 103 (2020) https://doi.org/10.1111/jace.16801 |
||||
18. S. Failla, P. Galizia, S. Fu, S. Grasso, D. Sciti, J Eur Ceram Soc 40 (2020) https://doi.org/10.1016/j.jeurceramsoc.2019.10.051 |
||||
19. J. Gu, J. Zou, S.K. Sun, H. Wang, S.Y. Yu, J. Zhang, W. Wang, Z. Fu, Sci China Mater 62 (2019) | ||||
20. Y. Zhang, S.K. Sun, W. Zhang, Y. You, W.M. Guo, Z.W. Chen, J.H. Yuan, H.T. Lin, Ceram Int 46 (2020) https://doi.org/10.1016/j.ceramint.2020.02.214 |
||||
21. W.G. Fahrenholtz, E.J. Wuchina, W.E. Lee, Y. Zhou, Ultra-High Temperature Ceramics Materials for Extreme Environment Applications, John Wiley & Son, 2014. https://doi.org/10.1002/9781118700853 |
||||
22. W.G. Fahrenholtz, J. Binner, J. Zou, J Mater Res 31 (2016) https://doi.org/10.1557/jmr.2016.210 |
||||
23. G. V. Samsonov, I. Vinitskiy, Refractory Compounds, 1976. | ||||
24. D.J. Hepner, K.P. Soencksen, B.S. Davis, N.G. Maiorana, 938-Serving the Army for Fifty Years-1988 BRL INTERNAL PRESSURE MEASUREMENTS FOR A LIQUID PAYLOAD AT LOW REYNOLDS NUMBERS, n.d. | ||||
25. L. Wang, M.R. Wixom, L.T. Thompson, Structural and mechanical properties of TiB2 and TiC prepared by self-propagating high-temperature synthesis/dynamic compaction, 1994. https://doi.org/10.1007/BF01162518 |
||||
26. M.S. Asl, M.G. Kakroudi, S. Noori, J Alloys Compd 619 (2015) | ||||
27. Y. Pan, H. Huang, X. Wang, Y. Lin, Comput Mater Sci 109 (2015) https://doi.org/10.1016/j.commatsci.2015.06.030 |
||||
28. M. Upatov, J. Vleugels, Y. Koval, V. Bolbut, I. Bogomol, Microstructure and mechanical properties of B4C-NbB2-SiC ternary eutectic composites by a crucible-free zone melting method, n.d. | ||||
29. X. Zhang, G.E. Hilmas, W.G. Fahrenholtz, Mater Lett 62 (2008) https://doi.org/10.1016/j.matlet.2008.06.052 |
||||
30. Y. Zhang, S.K. Sun, W.M. Guo, W. Zhang, L. Xu, J.H. Yuan, D.K. Guan, D.W. Wang, Y. You, H.T. Lin, J Eur Ceram Soc 41 (2021) | ||||
31. M. Qin, J. Gild, H. Wang, T. Harrington, K.S. Vecchio, J. Luo, J Eur Ceram Soc 40 (2020) https://doi.org/10.1016/j.jeurceramsoc.2020.05.040 |
||||
32. J. Gild, A. Wright, K. Quiambao-Tomko, et al Ceram Int 46 (2020) https://doi.org/10.1016/j.ceramint.2019.11.186 |
||||