Funct. Mater. 2024; 31 (3): 396-404.

doi:https://doi.org/10.15407/fm31.03.396

Crystallization features of solid solutions of hydrated diphosphates in the system ZnSO4–CoSO4–K4P2O7–H2O

N.M.Antraptseva, N.V.Solod, O.O.Kravchenko

National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony Str., 17, 03041, Kyiv, Ukraine

Abstract: 

During the interaction in the system ZnSO4–CoSO4–K4P2O7–H2O, due to isomorphic intersubstitution of cations, two solid solutions of hydrated zinc and cobalt(II) diphosphates are formed – Zn2-xCoxP2O7·5H2O and Co2-xZnxP2O7·6H2O. The crystal structures and homogeneity ranges of these solid solutions are different: Zn2-xCoxP2O7·5H2O crystallizes in the orthorhombic system (space group Pnma, Z=4), Co2-xZnxP2O7·6H2O – in the monoclinic system (space group Р21/n, Z=4). The homogeneity range of the solid solution Zn2-xCoxP2O7·5H2O defined as 0≤х≤0.69, is in 1.8 times wider than in the case of isomorphic substitution of Co(II) with Zn in the Co2P2O7·6H2O structure during crystallization of the Co2-xZnxP2O7·6H2O solid solution (0≤х≤ 0.39). The fact of the existence of different homogeneity ranges is substantiated by applying the main factors of i somorphism, the characteristics of co-precipitating cations and the chemical properties of diphosphate-matrix.

Keywords: 
hydrated diphosphates, solid solution, crystallization, homogeneity ranges.
References: 
1. A.Q.Acton, Phosphates - advances in research and application. Atlanta, Georgia (2013).
 
2. N.Shi, Y.Song, C.Zhou, L.Fan, J.Chen, Ceram. Int., 49, 294 (2023).
https://doi.org/10.1016/j.ceramint.2022.08.343
 
3. Y.Chang, N.Shi, S.Zhao et al., ACS Appl. Mater. Inter., 34, 22534 (2016).
https://doi.org/10.1021/acsami.6b07209
 
4. Z.Song, H.Yu, H.Wu, Z.Hu, J.Wang, Y.Wu, Inorg. Chem. Front., 7, 3482 (2020).
https://doi.org/10.1039/D0QI00689K
 
5. R.Gond, S.S.Meena, V.Pralong, P.Barpanda, J. Solid State Chem., 277, 329 (2019).
https://doi.org/10.1016/j.jssc.2019.06.027
 
6. D.Wei, H.J.Seo, Dalton T., 50, 8413 (2021).
https://doi.org/10.1039/D1DT00506E
 
7. B.Clavier, Synthèse, caractérisations et évaluation de l′activité bactéricide de composés inorganiques à base de cuivre. Chimie inorganique. Le Mans Université, Français (2019).
 
8. F.Z.Elhafiane, R.Khaoulaf, M.Harcharras,. J. Mol. Struct., 1245, 131234 (2021).
https://doi.org/10.1016/j.molstruc.2021.131234
 
9. F.Z.Elhafiane, R.Khaoulaf, M.Harcharras, M.Ouakki, K.Brouzi, Phosphorus Sulfur Silicon Relat. Elem., 195(12), 994 (2020).
https://doi.org/10.1080/10426507.2020.1768536
 
10. S.S.Smolyak, V.L.Karbivskyy, V.H.Kasiyanenko, Funct. Mater., 21(1), 80 (2014).
http://dx.doi.org/10.15407/fm21.01.080
 
11. V.L.Karbivskyy, S.S.Smolyak, Yu.A.Zagorodniy et al., Nanosyst. Nanomater. Nanotechnol., 10, 123 (2012).
 
12. V.L.Karbivskyy, S.S.Smolyak, Y.A. Zagorogniy, V.H.Kasiyanenko, Funct. Mater., 19, 459 (2012).
 
13. N.M.Antraptseva, N.V.Solod, G.M.Bila, B.I.Leonova, Scientific works. Plovdiv University of Food Technologies, LX, 600 (2013).
 
14. N.M.Antraptseva, N.V.Solod, Funct. Mater., 23(4), 657 (2016).
https://doi.org/10.15407/fm23.04.468
 
15. N.M.Antraptseva, A.A.Kliuhvant, Voprosy Khimii i Khimicheskoi Tekhnologii, 6, 92 (2003).
 
16. M.Harcharras, A.Ennaciri, F.Capitelli, G.Mattei, Vibrat. Spectrosc., 33, 189 (2003).
https://doi.org/10.1016/j.vibspec.2003.09.001
 
17. N.M.Antraptseva, N.V.Solod, O.D.Kochkodan, O.O.Kravchenko, Funct. Mater., 29 (4), 597 (2022)
https://doi.org/10.15407/fm29.04.597.
 
18. N.M.Antraptseva, N.V.Solod, O.O.Kravchenko, Funct. Mater., 28, 573 (2021)
https://doi.org/10.15407/fm28.03.573
 
19. D.R.Lide, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL (2005).
 
20. JCPDS. Powder Diffraction Filе, Inorganic Phases, JCPDS International Centre for Diffraction data, Swarthmere, USA, 1986, card № 07-0087.
 
21. H.Assaaoudi, I.S.Butler, J.Kozinski et al., J. Chem. Crystallogr., 35, 49 (2005).
https://doi.org/10.1007/s10870-005-1154-7
 
 
 

Current number: