Funct. Mater. 2024; 31 (3): 405-412.

doi:https://doi.org/10.15407/fm31.03.405

Synthesis, spectral-fluorescence properties and TD-DFT calculations of 4-canotryptophan and its derivatives

R.G. Shypov1, O.V. Buravov2,3, E.S. Gladkov1,2, L.V. Chepeleva1, A. V. Kyrychenko1,2

1 Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022, Ukraine
2 State Scientific Institution ′′Institute for Single Crystals′′, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv 61072, Ukraine
3 Enamine Ltd., 67 Winston Churchill St., Kyiv 02660, Ukraine

Abstract: 

Tryptophan-based fluorescent amino acids are promising alternatives to native tryptophan (Trp) for biological fluorescence studies. This work reports the synthesis and structure characterization of 4-cyanotryptophan (4-CN-Trp) based on the modified Mannich reaction. The optical spectra of 4-CN-Trp measured in solvents of different natures revealed the essential red-shifted absorption and emission in aqueous solutions compared to unsubstituted Trp. Moreover, the high fluorescence quantum yield of 4-CN-Trp makes it a promising replacement for native Trp for the study of folding and denaturation of proteins containing several Trp residues. In addition, the TD-DFT calculations were utilized for computer-aided design of dicyano-substituted Trp, suggesting that 4,6- and 4,7-diCN-Trp are promising for protein studies due to their red-shifted fluorescence.

Keywords: 
organic synthesis, heterocycles, non-natural amino acid, fluorescent probe, DFT.
References: 
1. A. Kyrychenko, A. S. Ladokhin. Chem. Record 4, e202300232 (2024). 
https://doi.org/10.1002/tcr.202300232
 
2. A. B. T. Ghisaidoobe, S. J. Chung. Int. J. Mol. Sci. 15, 22518-22538 (2014). 
https://doi.org/10.3390/ijms151222518
 
3. A. Kyrychenko, J. A. Freites, J. He, D.J. Tobias, W.C. Wimley, A.S. Ladokhin. Biophys. J. 106, 610-620 (2014). 
https://doi.org/10.1016/j.bpj.2013.12.032
 
4. Z. Cheng, E. Kuru, A. Sachdeva, M. Vendrell. Nat. Rev. Chem. 4, 275-290 (2020). 
https://doi.org/10.1038/s41570-020-0186-z
 
5. A. Kyrychenko. Methods Appl. Fluoresc. 3, 042003/1-19 (2015). https://doi.org/10.1088/2050-6120/3/4/042003.
https://doi.org/10.1088/2050-6120/3/4/042003
 
6. A. Acharyya, W. Zhang, F. Gai. J. Phys. Chem. B 125, 5458-5465 (2021). https://doi.org/ 10.1021/acs.jpcb.1c02321.
https://doi.org/10.1021/acs.jpcb.1c02321
 
7. M. E. Kieffer, L. M. Repka, S. E. Reisman. J. Am. Chem. Soc. 134, 5131-5137 (2012). https://doi.org/10.1021/ja209390d.
https://doi.org/10.1021/ja209390d
 
8. R. Micikas, A. Acharyya, F. Gai, A. B. Smith, III. Org. Lett. 23, 1247-1250 (2021). 
https://doi.org/10.1021/acs.orglett.0c04055
 
9. P. Talukder, S. Chen, B. Roy, P. Yakovchuk, M. M. Spiering, et all, Biochem. 54, 7457-7469 (2015). 
https://doi.org/10.1021/acs.biochem.5b01085
 
10. B. N. Markiewicz, D. Mukherjee, T. Troxler, F. Gai. J. Phys. Chem. B 120, 936-944 (2016). 
https://doi.org/10.1021/acs.jpcb.5b12233
 
11. T. Haldar, S. Chatterjee, M. N. Alam, P. Maity, S. Bagchi. J. Phys. Chem. B 126, 10732-10740 (2022).
https://doi.org/10.1021/acs.jpcb.2c05848
 
12. A. Acharyya, I. A. Ahmed, F. Gai. 4-cyanoindole-based fluorophores for biological spectroscopy and microscopy. in Methods in Enzymology, Chenoweth, D. M., Ed. Academic Press: 2020; Vol. 639, pp 191-215.
https://doi.org/10.1016/bs.mie.2020.04.014
 
13. I. A. Ahmed, J. M. Rodgers, C. Eng, T. Troxler, F. Gai. Phys. Chem. Chem. Phys. 21, 12843-12849 (2019). 
https://doi.org/10.1039/C9CP02126D
 
14. M. R. Hilaire, I. A. Ahmed, C.-W. Lin, H. Jo, W. F. DeGrado, F. Gai. Proc Natl Acad Sci USA 114, 6005-6009 (2017). 
https://doi.org/10.1073/pnas.1705586114
 
15. K. Zhang, I. A. Ahmed, H. T. Kratochvil, W. F. DeGrado, F. Gai, H. Jo. Chem. Commun. 55, 5095-5098 (2019). 
https://doi.org/10.1039/C9CC01152H
 
16. A. D. Becke. J. Chem. Phys. 98, 5648-5652 (1993). 
https://doi.org/10.1063/1.464913
 
17. T. H. Dunning. J. Chem. Phys. 90, 1007-1023 (1989). 
https://doi.org/10.1063/1.456153
 
18. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, et. al. Gaussian 16 rev. C.01, Wallingford, CT, 2016.
 
19. C. R. Hurt, R. Lin, H. Rapoport. J. Org. Chem. 64, 225-233 (1999). 
https://doi.org/10.1021/jo981723s
 
20. Y. Nosenko, A. Kyrychenko, R. P. Thummel, J. Waluk, B. Brutschy, J. Herbich. Phys. Chem. Chem. Phys. 9, 3276-3285 (2007). 
https://doi.org/10.1039/b703908e
 
21. Y. Nosenko, M. Kunitski, C. Riehn, R. P. Thummel, A. Kyrychenko, J. Herbich, J. Waluk, B. Brutschy. J. Phys. Chem. A 112, 1150-1156 (2008). 
https://doi.org/10.1021/jp076839j
 
22. H. Liu, H. Zhang, B. Jin. SpectroChim Acta A 106, 54-59 (2013). 
https://doi.org/10.1016/j.saa.2012.12.065
 
23. G. Díaz Mirón, M. C. González Lebrero. J. Phys. Chem. A 124, 9503-9512 (2020). 
https://doi.org/10.1021/acs.jpca.0c06631
 
24. S. Abou-Hatab, S. Matsika. J. Phys. Chem. B 123, 7424-7435 (2019). 
https://doi.org/10.1021/acs.jpcb.9b05961
 
25. D. Brisker-Klaiman, A. Dreuw. ChemPhysChem 16, 1695-1702 (2015). 
https://doi.org/10.1002/cphc.201500073
 
26. L. S. Slater, P. R. Callis. J. Phys. Chem. 99, 8572-8581 (1995). 
https://doi.org/10.1021/j100021a020

Current number: