Funct. Mater. 2024; 31 (3): 419-424.

doi:https://doi.org/10.15407/fm31.03.419

Thermal analysis of composite thermal insulation materials based on inorganic polymers

T. Rymar

Volodymyr Dahl East Ukrainian National University, Ukraine, Kyiv, Ioanna Pavla Druhoho, 17, 01042

Abstract: 

Thermogravimetric, differential thermal and differential thermogravimetric analyses of liquid-glass compositions intended for the manufacture of thermal insulation materials, as well as the materials themselves, manufactured under the influence of microwave radiation and convective heating, were carried out. It is shown that the composite materials obtained under the influence of microwave radiation in the presence of zinc oxide and semi-aqueous gypsum modifiers for coagulation and crystallization processes are almost dehydrated. Small mass losses observed in the temperature range of 200-430°C indicate the presence of only bound water in the samples. Hydration water from microwave-heated samples begins to be removed at a higher temperature than from convective-heated samples. These temperatures are 655 and 600°C, respectively, which makes it possible to increase the operating temperature of microwave-heated materials to 650°C; in addition, at high temperatures (200-600°C), the strength of these materials increases.

Keywords: 
thermal insulation materials, liquid-glass compositions, modifiers of coagulation and crystallization processes, microwave radiation, convective heating, thermogravimetric, differential thermal and differential thermogravimetric analyses.
References: 
1. O. Miryuk, R. Fediuk, M. Amran. Crystals. 11(12), 1447 (2021). 
https://doi.org/10.3390/cryst11121447
 
2. D. Storozhenko, O. Dryuchko, T. Jesionowski. International Journal of Engineering & Technology, 7 (3.2), 692, (2018).
https://doi.org/10.14419/ijet.v7i3.2.14615
 
3. O. Miryuk, R. Fediuk, M. Amran. Polymers, 14(17), 3461 (2022). 
https://doi.org/10.3390/polym14173461
 
4. H. Wang, H. Li, Y. Fengyuan. Physicochemical and Engineering Aspects, 268 (Is. 1-3), 1, (2005). 
https://doi.org/10.1016/j.colsurfa.2005.01.016
 
5. I. Giannopoulou, P. M. Robert, K-M. Sakkas, M. F. Petrou, D. Nicolaides. Journal of Building Engineering, 72 (1), 106575 (2023). 
https://doi.org/10.1016/j.jobe.2023.106575
 
6. Y. Ettahiri, D. M. Samuel, L. Bouna, A. Khali, A. Aziz, A. Benlhachemi, L. Pérez-Villarejo, W. M. Kriven. Journal of Building Engineering, 80 (1), 108021 (2023). 
https://doi.org/10.1016/j.jobe.2023.108021
 
7. Р. М. Novais et al. Progress in Materials Science. 109, 100621 (2020). 
https://doi.org/10.1016/j.pmatsci.2019.100621
 
8. T. Rymar, H. Tatarchenko, O. Fomin, V. Píštˇek, P. Kucera, M. Beran, O. Burlutskyy. Polymers. 14. (Is. 15), 3202 (2022).
https://doi.org/10.3390/polym14153202
 
9. T. Rymar, O. Suvorin, L. Rodin. Functional materials, 29 (3), 364, (2022). 
https://doi.org/10.15407/fm29.03.364
 
10. T.Rymar. Pytannia khimii i khimichnoi tekhnolohii. 1, 26 (2023). 
https://doi.org/10.32434/0321-4095-2023-146-1-26-33
 
11. A.N. Krasovskyi, V.S. Odlianytskaia, V.H. Baranov, H.Y. Ahafonov. Lakokrasochnye materyaly. 6, 81 (1989).
 
12. P.N. Hryhorev, M.A. Matveev. Rastvorymoe steklo: poluchenye, svoistva y prymenenye. Promstroiyzdat, (1956), p. 443 [in Russian].
 
13. B.V. Heneralov, O.V. Kryfuks, N.Y. Maliavskyi. Stroytelnye materyaly. 1, 7, (1999).].
 
14. R. Ailer. Kolloydnaia khymyia kremnezema y sylykatov. Hosstroiyzdat, (1959), p. 288 (in Russian].
 
15. V. A. Lotov, V.A. Kutuhyn. Steklo y keramyka. 1, 6 (2008).
 
16. T.K. Uhlova, S.N. Novoselova, O.V. Tataryntseva. Polzunovskyi vestnyk. 3, 278 (2013).
 
17. A.V. Zabolotskaia Tekhnolohyia y fyzyko-khymycheskye svoistva porystykh kompozytsyonnykh materyalov na osnove zhydkoho stekla y pryrodnykh sylykatov. Avtoref. dys. kand. tekhn. nauk, Tomsk (2003), p. 20.

Current number: