Funct. Mater. 2024; 31 (3): 425-431.

doi:https://doi.org/10.15407/fm31.03.425

Prediction of mechanical properties of polymer composites with carbon fillers based on low-frequency electrical conductivity data

O.M.Lisova2, S.M.Makhno1,2, G.M.Gunya2, P.P.Gorbik2, K.O.Ivanenko1,3, Yu.I.Sementsov1,2

1Ningbo Sino-Ukrainian New Materials Industrial Technologies Institute Co., Ltd 15th Floor, 777 West Zhongguan Road, Zhuangshi Street, Zhenhai District, Ningbo City, Zhejian Province, PRC, 315201
2 Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17 General Naumov Str., Kyiv, 03164, Ukraine
3 Institute of Macromolecular Chemistry of National Academy of Sciences of Ukraine, 48 Kharkiv highway, Kyiv, 02160, Ukraine

Abstract: 

Polymers reinforced with carbon fillers are used in load-bearing structures, racing cars, sports equipment, aircraft and drones due to their special stiffness and strength, as well as their electromagnetic shielding or absorption properties. The search for new materials, composites and quick prediction of their properties is an urgent task of polymer materials science. The paper shows that predicting the mechanical strength of the composites is possible by measuring electrical conductivity at low frequencies and extrapolating these values using the obtained expressions. The relative mechanical bending strength has a quadratic dependence on the filler content and can be represented with satisfactory accuracy by the low-frequency electrical conductivity for the composite system.

Keywords: 
relative bending strength, electrical conductivity, strength limit, percolation characteristics.
References: 
1. K.Markandan, C.Q.Lai. Comp. B: Engin., 256, 110661 (2023) 
https://doi.org/10.1016/j.compositesb.2023.110661
 
2. R.Aradhana, S.Mohanty, S.K.Nayak. Int. J. Adhesion and Adhesives., 99, 102596 (2020) 
https://doi.org/10.1016/j.ijadhadh.2020.102596
 
3. Z.Ali, S.Yaqoob, J.Yu, A.D′Amore. Comp. C., 13, 100434 (2024) 
https://doi.org/10.1016/j.jcomc.2024.100434
 
4. G.Magyar, D.I.Poór, T.Lukács, P.Tamás-Bényei, N.Geier. Procedia CIRP., 118, 833 (2023) 
https://doi.org/10.1016/j.procir.2023.06.143
 
5. U.O.Costa, L.F.C.Nascimento, J.M.Garcia et al. J. Mater. Res. Technol., 9, 13390e401 (2020) 
https://doi.org/10.1016/j.jmrt.2020.09.035
 
6. S.Sharma, A.Verma, S.M.Rangappa et al. J. Mater. Res. Technol., 26, 5921 (2023) 
https://doi.org/10.1016/j.jmrt.2023.08.300
 
7. H.Kang, F.Shu, Z.Li, X.Yang. Mechan. Syst. and Sign. Proc., 194, 110138 (2023) 
https://doi.org/10.1016/j.ymssp.2023.110138
 
8. M.Tiwari, B.K.Billing, H.S.Bedi, P.K.Agnihotri. J. Appl. Pol. Sci., 137, 48879 (2023) 
https://doi.org/10.1002/app.48879
 
9. L.Leffers, B.Roth, L.Overmeyer. Optics and Lasers in Engineering., 166, 107568 (2023) 
https://doi.org/10.1016/j.optlaseng.2023.107568
 
10. A.G.Rosenberger, D.C.Dragunski, E.C.Muniz et al. J. Molec. Liq., 298, 112068 (2020) 
https://doi.org/10.1016/j.molliq.2019.112068
 
11. A.B.Rashid, M.Haque, S.M.M.Islam, K.M.Rafi. Heliyon., 10 (2), e24692 (2024) 
https://doi.org/10.1016/j.heliyon.2024.e24692
 
12. L.Lei, Z.Yao, J.Zhou et al. Comp. Sci. and Technol. 200, 108479 (2020) 
https://doi.org/10.1016/j.compscitech.2020.108479
 
13. Y.Sementsov, W.Yang, K.Ivanenko et al. Appl. Nanosci., 12, 621 (2021) 
https://doi.org/10.1007/s13204-021-01730-w
 
14. W.-M.Qian, M.H.Vahid, Y.-L.Sun et al. J. Market. Res., 12, 1931 (2021) 
https://doi.org/10.1016/j.jmrt.2021.03.104
 
15. Y.Sementsov, W.Yang, O.Cherniuk et al. Appl. Nanosci., 13, 5313 (2023) 
https://doi.org/10.1007/s13204-023-02763-z
 
16. S.M.Makhno, O.M.Lisova, R.V.Mazurenko et al. Appl. Nanosci., 13, 7591 (2023) 
https://doi.org/10.1007/s13204-023-02902-6
 
17. Y.I.Semensov Formation of the structure and properties of sp² carbon nanomaterials and functional composites with their participation. Edited by academician of the NAS of Ukraine. Kyiv: Interservice (2019) 364 p.
 
18. Y.Sementsov, S.Makhno, M.Kartel et al. Int. J. of Innovative Sci., Eng. & Tech. 4(8), 71 (2017)
 
19. S.M.Makhno, O.M.Lisova, H.M.Hunya et al. Phys. and Chem. Solids., 17, 421 (2016).
https://doi.org/10.15330/pcss.17.3.421-425
 
20. Patent UA№152237.
 
21. Patent UA№126624.
 
22. O.Lisova, S.Makhno, R.Mazurenko et al. IEEE 13thInternational Conference Nanomaterials: Applications & Properties (NAP), Bratislava, NEE14-1 (2024) 
https://doi.org/10.1109/NAP59739.2023.10310950
 
23. S.Kocaman, M.Gursoy, M.Karaman, G.Ahmetli. Surface & Coatings Technology., 399, 126144 (2020) 
https://doi.org/10.1016/j.surfcoat.2020.126144
 

Current number: