Funct. Mater. 2024; 31 (3): 432-441.

doi:https://doi.org/10.15407/fm31.03.432

Research of slag sorbents in treatment of industrial wastewater

E. Khobotova, I. Hraivoronska

Kharkiv National Automobile and Highway University, 61002, 25, Yaroslava Mudrogo St., Kharkiv, Ukraine

Abstract: 

The sorption properties of metallurgical slag from the following enterprises were determined: Pobuzhsky Ferronickel Plant (PFNP), PJSC Nikopol Ferroalloy Plant (NFP) and blast furnace slag from PJSC ArcelorMittal Kryvyi Rih. The slag from PFNP (production of FeNi alloys) and NFP (production of FeSiMn) contain mineral diopside CaSiO3.MgSiO3, and NFР slag additionally contains titanite Ca(Ti0.818Al0.182))(O0.818F0.182)(SiO4). The minerals okermanite 2CaO·MgO·2SiO2, rankinite 3CaO·2SiO2 and microcline КAlSi3O8, oldhamite CaS and calcite CaCO3 were identified in the composition of granular slag from ArcelorMittal. Some phases are in an amorphous sorption-active state. The possibility of chemical activation of slags with water, alkali and acid solutions for 1 day was shown; as a result, the slag surface area increases, hydroxyl and silanol groups form and dissociate with the formation of a negative surface charge, which is typical for Ca and Mg aluminosilicates. The most appropriate acid activation is in 0.5 M H2SO4 at 20 °C. It has been shown that adsorption is determined not only by the degree of loosening and charge of the slag surface, but also by the nature of organic dyes as sorbates. Dyes cationic forms are sorbed more efficiently. The nature of the interaction of slag adsorbents and organic compounds indicates the occurrence of specific, irreversible activated adsorption.

Keywords: 
slag, minerals, amorphous condition, sorption, activation, desorption, specificactivated adsorption.
References: 
1. V.M. Radovenchyk, M.D. Gomelya, Ya.V. Radovenchyk, Waste utilization and recovery, Condor, Kyiv (2021) [in Ukrainian].
 
2. O.O. Borysovska, Inventory and accounting of waste, Lithograph, Dnipro (2017) [in Ukrainian].
 
3. M.O. Barinov, I.L. Oleksievets, D.V. Rodnaya, T.V. Zhuravel, S.V. Kolomiets, I.A. Kozlova,H.P. Parkhomenko, Practical aspects of waste management in Ukraine, Polygraph plus, Kyiv (2021) [in Ukrainian].
 
4. S.V. Stankevich, L.V. Golovan, E.M. Biletskyi et al. Waste utilization and recovery, I.S. Ivanchenko Publishing House, Kharkiv (2020) [in Ukrainian].
 
5. E.B. Khobotova, Iu.S. Kaliuzhna, V.V. Datsenko, V.I. Larin, J. of Chem. and Techn., 29, 2 (2021) 
https://doi.org/10.15421/jchemtech.v29i2.228352
 
6. E.B. Khobotova, Iu.S. Kaliuzhna, J. of Chem. and Techn., 31, 3 (2023) 
https://doi.org/10.15421/jchemtech.v31i3.279211
 
7. M. Vakili, M. Rafatullah, B. Salamatinia, A.Z.Abdullah, M.H. Ibrahim, K.B. Tan et. al., Carbohydrate Polymers, 113 (2014) 
https://doi.org/10.1016/j.carbpol.2014.07.007
 
8. Md.J. Uddin, R.E. Ampiaw, W. Lee, Chemosphere, 284, 131314 (2021) 
https://doi.org/10.1016/j.chemosphere.2021.131314
 
9. F.J. Alguacil, F.A. Lopez, Promising Techniques for Wastewater Treatment and Water Quality Assessment, IntechOpen, Rijeka (2020) 
https://doi.org/10.5772/intechopen.94164
 
10. E.B. Khobotova, I.V.Hraivoronska, Сhernye metally, 7 (2019) [in Russian].
 
11. E.B. Khobotova, I.V.Hraivoronska, M.I. Ihnatenko, Iu.S. Kaliuzhna, ChemChemTech., 63, 8 (2020). 
https://doi.org/10.6060/ivkkt.20206308.6197
 
12. E. B. Khobotova, I.V. Hraivoronska, Iu.S. Kaliuzhna, M.I. Ihnatenko, ChemChem-Tech., 64, 6 (2021) 
https://doi.org/10.6060/ivkkt.20216406.6302
 
13. I. Jonczy, B. Grzesik, A.N. Wieczorek, A. Gerle, P. Nuckowski, M. Staszuk, Gospodarka Surowcami Mineralnymi − Mineral Resources Management, 38, 4 (2022) 
https://doi.org/10.24425/gsm.2022.143625
 
14. S.I. Mudry, Yu.O. Kulyk, A.S. Yakymovych, Xray structural analysis in materials science, Ivan Franko National University, Lviv (2017) [in Ukrainian].
 
15. JCPDS PDF-1 File [Electronic resource]. ICDD: The Intern. Centre Diffr. Data, (1994). PA, USA.
 
16. J. Rodriguez-Carvajal, T. Roisnel, FullProf.98 and WinPLOTR: New Windows 95/NT Applications for Diffraction. Com. Powder Diffr., Intern. Union Crystallogr., Newsletter, 20 (1998).
 
17. J. Gouldstein, H. Yakowitz, Practical Scanning Electron Microscopy, Mir, Moscow (1978) [in Russian].
 
18. State industry standard 27384-2002. Water. Norms of error in measurements of composition and properties.
 
19. Sanitary rules and norms 2.1.5.980-00. Hygienic regulations to the protection of surface waters.

Current number: