Funct. Mater. 2024; 31 (4): 457-473.

doi:https://doi.org/10.15407/fm31.04.457

Recent advances in the photocatalytic remediation of polycyclic aromatic hydrocarbons

A. Timonina, I. Shcherbakov, K. Belikov, T. Shcherbakova

Institute of Functional Materials Chemistry, State Scientific Institution “Institute for Single Crystals” of NAS of Ukraine, 60 Nauky ave., Kharkiv, 61072, Ukraine

Abstract: 

Polycyclic aromatic hydrocarbons (PAHs) are among the most hazardous environmental pollutants due to their high toxicity, carcinogenicity, and ability to accumulate in ecosystems. The development of effective methods for their deactivation is an extremely pressing issue in modern science. One of the most promising methods for efficient PAHs destruction is photocatalytic degradation, which is based on the use of semiconductor materials. Photocatalysis is an environmentally friendly and energy-efficient approach that facilitates the oxidation of PAHs through light irradiation, resulting in the formation of less harmful compounds. This area of research is rapidly advancing, with new materials and approaches emerging each year to enhance the efficiency of photocatalytic degradation of organic pollutants, particularly PAHs. Special attention is given to the development of new photocatalytic materials such as modified oxides of titanium, zinc, iron, and metal- and graphene-based nanocomposites, which offer high activity, stability, and effectiveness in real-world conditions. The review presented in this paper systematizes recent advancements in the field of photocatalytic degradation of PAHs, focusing on key aspects of mechanisms, materials, and future research prospects.

Keywords: 
PAHs, photocatalysis, nanomaterials, surface chemistry, GC-MS
References: 
1. Lawal, A. T. Cogent Environ. Sci. 3, 1 (2017).
https://doi.org/10.1080/23311843.2017.1339841
 
2. Li R., Cai J., Li J. et al. J. Hazard. Mater. 423, 127065 (2022).
https://doi.org/10.1016/j.jhazmat.2021.127065
 
3. Abdel-Shafy, H. I. & Mansour, M. S. M. Egypt. J. Pet. 25, 107 (2016).
https://doi.org/10.1016/j.ejpe.2015.03.011
 
4. Marris, C. R., Kompella, S. N. Miller, M. R. et al. J. Physiol. 598, 227 (2020).
https://doi.org/10.1113/JP278885
 
5. International Agency for Research on Cancer. Some Non-Heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures. (International Agency for Research on Cancer, Lyon, 2010).
 
6. U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES. Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHS). ATSDR′s Toxicol. Profiles (2002).
 
7. Commission Regulation. Off. J. Eur. Union. 2016, 48 (2018).
 
8. European Commission. Off. J. Eur. Union 119, 103 (2023).
 
9. US EPA. NATIONAL PRIMARY DRINKING WATER REGULATIONS. (US EPA, 2014).
 
10. Keith, L. H. Polycycl. Aromat. Compd. 35, 147 (2015).
https://doi.org/10.1080/10406638.2014.892886
 
11. Health Canada. Maximum Levels for Chemical Contaminants in Foods. (2016).
 
12. Mojiri, A., Zhou, J. L., Ohashi, A. et al. Sci. Total Environ. 696, 133971 (2019).
https://doi.org/10.1016/j.scitotenv.2019.133971
 
13. Yang B., Shi Y., Xu S. et al. Environ. Sci. Process. Impacts 24, 32 (2022).
https://doi.org/10.1039/D1EM00377A
 
14. Patel, A. B., Shaikh, S., Jain, K. R. et al. Front. Microbiol. 11, (2020).
https://doi.org/10.3389/fmicb.2020.562813
 
15. Dobaradaran S., Schmidt Torsten C., Lorenzo-Parodi Nerea et al. Environ. Pollut. 259, 113916 (2020).
https://doi.org/10.1016/j.envpol.2020.113916
 
16. Gbeddy, G., Goonetilleke, A., Ayoko, G. A. et al. Environ. Pollut. 257, 113510 (2020).
https://doi.org/10.1016/j.envpol.2019.113510
 
17. Barreca S., Oliveri, I. P., Lo Presti F. et al. Sep. Purif. Technol. 348, 127516 (2024).
https://doi.org/10.1016/j.seppur.2024.127516
 
18. Sher, S., Waseem, M., Leta, M. K. Environ. - MDPI 10, 1 (2023).
https://doi.org/10.3390/environments10030040
 
19. Lamichhane, S., Bal Krishna, K. C., Sarukkalige, R. Chemosphere 148, 336 (2016).
https://doi.org/10.1016/j.chemosphere.2016.01.036
 
20. Amin Mojiri, Zhou, John L. Ohashi, Akiyoshi. SCIENCE OF THE TOTAL ENVIRONMENT 696, 133971 (2019).
https://doi.org/10.1016/j.scitotenv.2019.133971
 
21. Singh, R., Singh, P., Tripathi, S., Chandra, K. K. & Bhadouria, R. Xenobiotics in Urban Ecosystems: Sources, Distribution and Health Impacts. (2023).
https://doi.org/10.1007/978-3-031-35775-6
 
22. Haritash, A. K. & Kaushik, C. P. J. Hazard. Mater. 169, 1 (2009).
https://doi.org/10.1016/j.jhazmat.2009.03.137
 
23. Abdel-Fatah, M. A. Ain Shams Eng. J. 9, 3077 (2018).
https://doi.org/10.1016/j.asej.2018.08.001
 
24. Boulkhessaim, S., Gacem A. K., Samreen H. et al. Nanomaterials 12, 1 (2022).
https://doi.org/10.3390/nano12132148
 
25. Ibhadon, A. O. & Fitzpatrick, P. Catalysts 3, 189 (2013).
https://doi.org/10.3390/catal3010189
 
26. Kukkar, D., Kukkar, P., Younis, S. A. & Kim, K. H. J. Clean. Prod. 333, 130026 (2022).
https://doi.org/10.1016/j.jclepro.2021.130026
 
27. Monteiro, F. C., Guimaraes, I. D. L., de Almeida Rodrigues, P. et al. J. Photochem. Photobiol. A Chem. 437, (2023).
https://doi.org/10.1016/j.jphotochem.2022.114497
 
28. Kolahalam L. A., Kasi Viswanath, I. V., Diwakar Bhagavathula S. et al. Mater. Today Proc. 18, 2182 (2019).
https://doi.org/10.1016/j.matpr.2019.07.371
 
29. Chen, X. & Mao, S. S. Chem. Rev. 107, 2891 (2007).
https://doi.org/10.1021/cr0500535
 
30. Khan N. A., Khan S. U., Ahmed S. et al. Asian J. Water, Environ. Pollut. 16, 81 (2019).
https://doi.org/10.3233/AJW190051
 
31. Kisch, H. Characterization of Solid Materials and Heterogeneous Photocatalysis and Water Photoinitiators for Polymer Applied Homogeneous. (2015).
 
32. Pichat, P. Photocatalysis and Water Purification: From Fundamentals to Recent Applications. (2013).
https://doi.org/10.1002/9783527645404
 
33. Kunduru K. R., Nazarkovsky M., Shady F. et al. Water Purification, 33, 33-74 (2017).
https://doi.org/10.1016/B978-0-12-804300-4.00002-2
 
34. Nasir, A., Khalid, S., Yasin, T. & Mazare, A. Energies 15, (2022).
https://doi.org/10.3390/en15176248
 
35. Zhang, J., Zhou, P., Liu, J. & Yu, J. Phys. Chem. Chem. Phys. 16, 20382 (2014).
https://doi.org/10.1039/C4CP02201G
 
36. Landmann, M., Rauls, E. & Schmidt, W. G. J. Phys. Condens. Matter 24, (2012).
https://doi.org/10.1088/0953-8984/24/19/195503
 
37. Mahlambi, M. M., Ngila, C. J. & Mamba, B. B. Journal of Nanomaterials, 2015 (2015).
https://doi.org/10.1155/2015/790173
 
38. T.A.Khalyavka, S.V.Camyshan, L.A.Davydenko et al. Funct. Mater. 25, 067 (2018).
 
39. Hurum, D. C., Agrios, A. G., Gray, K. A. et al. J. Phys. Chem. B 107, 4545 (2003).
https://doi.org/10.1021/jp0273934
 
40. Durodola S. S., Olaniran K. Ore, Odunayo T. et al. J. Fluoresc. 34, 501 (2024).
https://doi.org/10.1007/s10895-023-03332-x
 
41. Gusain, R., Gupta, K., Joshi, P. & Khatri, O. P. Advances in Colloid and Interface Science 272, 102009 (2019).
https://doi.org/10.1016/j.cis.2019.102009
 
42. Liu, Z., Liu, X., Lu, Q. et al. J. Taiwan Inst. Chem. Eng. 96, 214 (2019).
https://doi.org/10.1016/j.jtice.2018.11.013
 
43. Bai, H., Zhou, J., Zhang, H. & Tang, G. Colloids Surfaces B Biointerfaces 150, 68 (2017).
https://doi.org/10.1016/j.colsurfb.2016.11.017
 
44. Luo Z. H., Wei C. L., He N. N. et al. J. Nanomater. 2015, (2015).
 
45. Rachna, Rani, M. & Shanker, U. J. Environ. Manage. 248, 109340 (2019).
https://doi.org/10.1016/j.jenvman.2019.109340
 
46. Zhao, Z. & Omer, A. A. Env. Sci. Pol. Res. 27, 17530-17540 (2019).
https://doi.org/10.1007/s11356-019-05787-7
 
47. Cheng K., Cai Z., Fu J. et al. Chem. Eng. J. 358, 1155 (2019).
https://doi.org/10.1016/j.cej.2018.10.114
 
48. Sun X., He W., Hao X. et al. J. Hazard. Mater. 412, 125221 (2021).
https://doi.org/10.1016/j.jhazmat.2021.125221
 
49. Daneshvar, N., Salari, D. & Khataee, A. R. J. Photochem. Photobiol. A Chem. 162, 317 (2004).
https://doi.org/10.1016/S1010-6030(03)00378-2
 
50. Minh Huong L., Minh Dat N., Thanh Hoai N. et al. Environmental Nanotechnology, Monitoring and Management. 22, 100966 (2024).
https://doi.org/10.1016/j.enmm.2024.100966
 
51. Islam, S. Z., Nagpure, S., Kim, D. Y. & Rankin, S. E. Inorganics 5, 15 (2017).
https://doi.org/10.3390/inorganics5010015
 
52. Azmi R., Hwang S., Yin W. et al. ACS Energy Lett. 3, 1241 (2018).
https://doi.org/10.1021/acsenergylett.8b00493
 
53. Chudinovych O.V., Myroniuk D.V., Myroniuk L.A. et al. Funct. Mater. 30, 171 (2023).
 
54. Nga, P. T. T., Duc, N. M., Van Minh, N. & Lien, N. H. Vietnam J. Chem. 60, 389 (2022).
https://doi.org/10.1002/vjch.202100171
 
55. Liu, Q., Li, X., Wan, Z., Xu, D. & Liu, C. Colloids Surfaces A Physicochem. Eng. Asp. 700, 134765 (2024).
https://doi.org/10.1016/j.colsurfa.2024.134765
 
56. Vela, N., Martínez-Menchón, M., Navarro, G. et al. J. Photochem. Photobiol. A Chem. 232, 32 (2012).
https://doi.org/10.1016/j.jphotochem.2012.02.003
 
57. Sliem, M. A., Salim, A. Y. & Mohamed, G. G. Vol. 371, Pages 327 - 335 371, 327 (2019).
https://doi.org/10.1016/j.jphotochem.2018.11.028
 
58. Rachna, Rani, M. & Shanker, J. Photochem. Photobiol. A Chem. 381, (2019).
https://doi.org/10.1016/j.jphotochem.2019.111861
 
59. Batchamen Mougnol, J. B., Waanders, F., Ntwampe, S. K. O. et al. Environ. Syst. Res. 11, 25 (2022).
https://doi.org/10.1186/s40068-022-00271-7
 
60. Chauhan H. A., Rafatullah M. A., Khozema A. et al. J. Water Process Eng. 47, 102714 (2022).
https://doi.org/10.1016/j.jwpe.2022.102714
 
61. Manna, M., Sen, S. Appl. Surf. Sci. 630, (2023).
https://doi.org/10.1016/j.apsusc.2023.157523
 
62. Tandorn, S., Lamkhao, S., Thiraphatchotiphum C. et al. Chem. Eng. J. 457, 141190 (2023).
https://doi.org/10.1016/j.cej.2022.141190
 
63. Zhao J., Tian W., Chu M. et al. Chemosphere 297, 134175 (2022).
https://doi.org/10.1016/j.chemosphere.2022.134175
 
64. Dai Y., Wang Y., Zuo G. et al. Chemosphere 293, (2022).
https://doi.org/10.1016/j.chemosphere.2022.133576
 
65. Dai, Y. Wang Y., Zuo G. et al. Appl. Surf. Sci. 572, (2022).
https://doi.org/10.1016/j.apsusc.2021.151421
 
66. Wang Y., Feng W., Gong A. et al. Catal. Letters 154, 3574 (2024).
https://doi.org/10.1007/s10562-024-04612-2
 
67. Marques M., Cervello D., Mari M. et al. Polycycl. Aromat. Compd. 40, 524 (2020).
 
68. Ali A., Raza T., Adeel F. et al. Synth. Met. 287, (2022).
https://doi.org/10.1016/j.synthmet.2022.117072
 
69. Al-Hunaiti, A., Ghazzy, A. M., Mahmoud, N. T. Chem. Eng. J. Adv. 19, (2024).
https://doi.org/10.1016/j.ceja.2024.100631
 
70. Li, T., Wang, M., Hao, Y. Sci. Total Environ. 857, (2023).
https://doi.org/10.1016/j.scitotenv.2022.159055
 
71. Yang G., Jiang Y., Yin B. et al. Environ. Sci. Pollut. Res. 30, 70260 (2023).
https://doi.org/10.1007/s11356-023-27334-1
 
72. Qiao, M., Fu, L. & Barcelo, D. Process Saf. Environ. Prot. 159, 376 (2022).
https://doi.org/10.1016/j.psep.2022.01.015
 
73. Huang R., Zhang M., Zheng Z. et al. NANOMATERIALS 11, (2021).
https://doi.org/10.3390/nano11112776
 
74. Lu J., Guo Z., Li M. et al. Chemosphere 318, (2023).
https://doi.org/10.1016/j.chemosphere.2023.137966
 
75. Brindhadevi K., Kim T P, Sulaiman A. et al. Environ. Res. 252, (2024).
https://doi.org/10.1016/j.envres.2024.118454
 
76. Karam F. F., Hussein F. H., Baqir S. J. et al. Int. J. Photoenergy 2014, 1 (2014).
https://doi.org/10.1155/2014/503825
 
77. Soni, H., Kumar, N., Patel, K. & Kumar, R. N. Polycycl. Aromat. Compd. 40, 257 (2020).
https://doi.org/10.1080/10406638.2017.1411956
 
78. Saloot, M. K., Borghei, S. M. & Shirazi, R. H. S. M. Desalin. Water Treat. 220, 287 (2021).
https://doi.org/10.5004/dwt.2021.26939
 
79. Ji H., Liu W., Sun F. et al. Chem. Eng. J. 419, (2021).
 
80. Al-Madanat, O., Alsalka, Y., Dillert, R. et al. Catalysts 11, 1 (2021).
https://doi.org/10.3390/catal11010107
 
81. Quynh, T. X. & Toan, V. D. Ecol. Environ. Conserv. 28, 606 (2022).
https://doi.org/10.53550/EEC.2022.v28i02.004
 
82. McQueen A. D., Ballentine M. L., May L. R. et al. ACS Environ. Sci. Technol. Water 2, 137 (2022).
https://doi.org/10.1021/acsestwater.1c00299
 
83. Zhang J., Yu F., Ke X. et al. Molecules 27, (2022).
https://doi.org/10.3390/molecules27196654
 
84. Alomairy, S., Gnanasekaran, L., Rajendran, S. & Alsanie, W. F. Chemosphere 343, 140274 (2023).
https://doi.org/10.1016/j.chemosphere.2023.140274
 
85. Meenu, N., Rani, M. & Shanker, U. Environ. Sci. Adv. 3, 249 (2023).
https://doi.org/10.1039/D3VA00245D
 
86. Martínez-Vargas B. L., Cruz-Ramírez M., Díaz-Real J. A. et al. J. Photchem. Photobiol. A: Chemistry, 369, 85 (2019).
https://doi.org/10.1016/j.jphotochem.2018.10.010
 
87. Guo Y., Dai Y., Zhao W. et al. Appl. Catal. B Environ. 237, 273 (2018).
 
88. Woo, O. T., Chung, W. K., Wong, K. H. et al. J. Hazard. Mater. 168, 1192 (2009).
https://doi.org/10.1016/j.jhazmat.2009.02.170
 
89. Fu J., Kyzas G. Z., Cai Z. et al. Chem. Eng. J. 335, 290 (2018).
https://doi.org/10.1016/j.cej.2017.10.163
 
90. Theerakarunwong, C. D. & Phanichphant, S. Water. Air. Soil Pollut. 229, (2018).
https://doi.org/10.1007/s11270-018-3951-6
 
91. Shanker, U., Jassal, V. & Rani, M. J. Environ. Manage. 204, 337 (2017).
https://doi.org/10.1016/j.jenvman.2017.09.015
 
92. Rachna, Rani, M. & Shanker, U. Chem. Eng. J. 348, 754 (2018).
https://doi.org/10.1016/j.cej.2018.04.185
 
93. Yang X., Cai H., Bao M. et al. Chem. Eng. J. 334, 355 (2018).
https://doi.org/10.1016/j.cej.2017.09.104
 
94. Rachna, Rani, M. & Shanker, U. J. Photochem. Photobiol. A Chem. 381, 111861 (2019).
https://doi.org/10.1016/j.jphotochem.2019.111861
 
95. Kudlek, E. & Dudziak, M. Water Sci. Technol. 77, 2407 (2018).
https://doi.org/10.2166/wst.2018.192
 
96. Darkhosh, F., Lashanizadegan, M., Mahjoub, A. R. & Cheshme Khavar, A. H. Solid State Sci. 91, 61 (2019).
https://doi.org/10.1016/j.solidstatesciences.2019.03.009
 
97. Zhang L., Xing Z., Zhang H. et al. Appl. Catal. B Environ. 180, 521 (2016).
https://doi.org/10.1016/j.apcatb.2015.07.002
 
98. Długosz, M., Waś, J., Szczubiałka, K. & Nowakowska, M. J. Mater. Chem. A 2, 6931 (2014).
https://doi.org/10.1039/c3ta14951j
 
99. Nasir A. M., Jaafar J., Aziz F. et al. J. Water Process Eng. 36, (2020).
https://doi.org/10.1016/j.jwpe.2020.101300
 
100. Zhang K., Zhou W., Zhang X. et al. Appl. Catal. B Environ. 206, 336 (2017).
 
101. Dalponte Dallabona, I., Mathias, Á. L. & Jorge, R. M. M. Colloids Surfaces A Physicochem. Eng. Asp. 627, (2021).
https://doi.org/10.1016/j.colsurfa.2021.127159
 
102. Ferreira, A. V. de T. P. F., Barbosa L. V., de Souza S. D. et al. J. Photochem. Photobiol. A Chem. 419, 113483 (2021).
https://doi.org/10.1016/j.jphotochem.2021.113483
 
103. Anusuyadevi, P. R., Riazanova, A. V, Hedenqvist et al. ACS Omega 5, 22411 (2020).
https://doi.org/10.1021/acsomega.0c02872
 
104. Bleasdale-Pollowy, A., Chan, C., Leshuk, T. M. C. & Gu, F. Environ. Technol. Innov. 33, 103492 (2024).
https://doi.org/10.1016/j.eti.2023.103492
 

Current number: