Funct. Mater. 2024; 31 (4): 457-473.
Recent advances in the photocatalytic remediation of polycyclic aromatic hydrocarbons
Institute of Functional Materials Chemistry, State Scientific Institution “Institute for Single Crystals” of NAS of Ukraine, 60 Nauky ave., Kharkiv, 61072, Ukraine
Polycyclic aromatic hydrocarbons (PAHs) are among the most hazardous environmental pollutants due to their high toxicity, carcinogenicity, and ability to accumulate in ecosystems. The development of effective methods for their deactivation is an extremely pressing issue in modern science. One of the most promising methods for efficient PAHs destruction is photocatalytic degradation, which is based on the use of semiconductor materials. Photocatalysis is an environmentally friendly and energy-efficient approach that facilitates the oxidation of PAHs through light irradiation, resulting in the formation of less harmful compounds. This area of research is rapidly advancing, with new materials and approaches emerging each year to enhance the efficiency of photocatalytic degradation of organic pollutants, particularly PAHs. Special attention is given to the development of new photocatalytic materials such as modified oxides of titanium, zinc, iron, and metal- and graphene-based nanocomposites, which offer high activity, stability, and effectiveness in real-world conditions. The review presented in this paper systematizes recent advancements in the field of photocatalytic degradation of PAHs, focusing on key aspects of mechanisms, materials, and future research prospects.
1. Lawal, A. T. Cogent Environ. Sci. 3, 1 (2017). https://doi.org/10.1080/23311843.2017.1339841 |
||||
2. Li R., Cai J., Li J. et al. J. Hazard. Mater. 423, 127065 (2022). https://doi.org/10.1016/j.jhazmat.2021.127065 |
||||
3. Abdel-Shafy, H. I. & Mansour, M. S. M. Egypt. J. Pet. 25, 107 (2016). https://doi.org/10.1016/j.ejpe.2015.03.011 |
||||
4. Marris, C. R., Kompella, S. N. Miller, M. R. et al. J. Physiol. 598, 227 (2020). https://doi.org/10.1113/JP278885 |
||||
5. International Agency for Research on Cancer. Some Non-Heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures. (International Agency for Research on Cancer, Lyon, 2010). | ||||
6. U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES. Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHS). ATSDR′s Toxicol. Profiles (2002). | ||||
7. Commission Regulation. Off. J. Eur. Union. 2016, 48 (2018). | ||||
8. European Commission. Off. J. Eur. Union 119, 103 (2023). | ||||
9. US EPA. NATIONAL PRIMARY DRINKING WATER REGULATIONS. (US EPA, 2014). | ||||
10. Keith, L. H. Polycycl. Aromat. Compd. 35, 147 (2015). https://doi.org/10.1080/10406638.2014.892886 |
||||
11. Health Canada. Maximum Levels for Chemical Contaminants in Foods. (2016). | ||||
12. Mojiri, A., Zhou, J. L., Ohashi, A. et al. Sci. Total Environ. 696, 133971 (2019). https://doi.org/10.1016/j.scitotenv.2019.133971 |
||||
13. Yang B., Shi Y., Xu S. et al. Environ. Sci. Process. Impacts 24, 32 (2022). https://doi.org/10.1039/D1EM00377A |
||||
14. Patel, A. B., Shaikh, S., Jain, K. R. et al. Front. Microbiol. 11, (2020). https://doi.org/10.3389/fmicb.2020.562813 |
||||
15. Dobaradaran S., Schmidt Torsten C., Lorenzo-Parodi Nerea et al. Environ. Pollut. 259, 113916 (2020). https://doi.org/10.1016/j.envpol.2020.113916 |
||||
16. Gbeddy, G., Goonetilleke, A., Ayoko, G. A. et al. Environ. Pollut. 257, 113510 (2020). https://doi.org/10.1016/j.envpol.2019.113510 |
||||
17. Barreca S., Oliveri, I. P., Lo Presti F. et al. Sep. Purif. Technol. 348, 127516 (2024). https://doi.org/10.1016/j.seppur.2024.127516 |
||||
18. Sher, S., Waseem, M., Leta, M. K. Environ. - MDPI 10, 1 (2023). https://doi.org/10.3390/environments10030040 |
||||
19. Lamichhane, S., Bal Krishna, K. C., Sarukkalige, R. Chemosphere 148, 336 (2016). https://doi.org/10.1016/j.chemosphere.2016.01.036 |
||||
20. Amin Mojiri, Zhou, John L. Ohashi, Akiyoshi. SCIENCE OF THE TOTAL ENVIRONMENT 696, 133971 (2019). https://doi.org/10.1016/j.scitotenv.2019.133971 |
||||
21. Singh, R., Singh, P., Tripathi, S., Chandra, K. K. & Bhadouria, R. Xenobiotics in Urban Ecosystems: Sources, Distribution and Health Impacts. (2023). https://doi.org/10.1007/978-3-031-35775-6 |
||||
22. Haritash, A. K. & Kaushik, C. P. J. Hazard. Mater. 169, 1 (2009). https://doi.org/10.1016/j.jhazmat.2009.03.137 |
||||
23. Abdel-Fatah, M. A. Ain Shams Eng. J. 9, 3077 (2018). https://doi.org/10.1016/j.asej.2018.08.001 |
||||
24. Boulkhessaim, S., Gacem A. K., Samreen H. et al. Nanomaterials 12, 1 (2022). https://doi.org/10.3390/nano12132148 |
||||
25. Ibhadon, A. O. & Fitzpatrick, P. Catalysts 3, 189 (2013). https://doi.org/10.3390/catal3010189 |
||||
26. Kukkar, D., Kukkar, P., Younis, S. A. & Kim, K. H. J. Clean. Prod. 333, 130026 (2022). https://doi.org/10.1016/j.jclepro.2021.130026 |
||||
27. Monteiro, F. C., Guimaraes, I. D. L., de Almeida Rodrigues, P. et al. J. Photochem. Photobiol. A Chem. 437, (2023). https://doi.org/10.1016/j.jphotochem.2022.114497 |
||||
28. Kolahalam L. A., Kasi Viswanath, I. V., Diwakar Bhagavathula S. et al. Mater. Today Proc. 18, 2182 (2019). https://doi.org/10.1016/j.matpr.2019.07.371 |
||||
29. Chen, X. & Mao, S. S. Chem. Rev. 107, 2891 (2007). https://doi.org/10.1021/cr0500535 |
||||
30. Khan N. A., Khan S. U., Ahmed S. et al. Asian J. Water, Environ. Pollut. 16, 81 (2019). https://doi.org/10.3233/AJW190051 |
||||
31. Kisch, H. Characterization of Solid Materials and Heterogeneous Photocatalysis and Water Photoinitiators for Polymer Applied Homogeneous. (2015). | ||||
32. Pichat, P. Photocatalysis and Water Purification: From Fundamentals to Recent Applications. (2013). https://doi.org/10.1002/9783527645404 |
||||
33. Kunduru K. R., Nazarkovsky M., Shady F. et al. Water Purification, 33, 33-74 (2017). https://doi.org/10.1016/B978-0-12-804300-4.00002-2 |
||||
34. Nasir, A., Khalid, S., Yasin, T. & Mazare, A. Energies 15, (2022). https://doi.org/10.3390/en15176248 |
||||
35. Zhang, J., Zhou, P., Liu, J. & Yu, J. Phys. Chem. Chem. Phys. 16, 20382 (2014). https://doi.org/10.1039/C4CP02201G |
||||
36. Landmann, M., Rauls, E. & Schmidt, W. G. J. Phys. Condens. Matter 24, (2012). https://doi.org/10.1088/0953-8984/24/19/195503 |
||||
37. Mahlambi, M. M., Ngila, C. J. & Mamba, B. B. Journal of Nanomaterials, 2015 (2015). https://doi.org/10.1155/2015/790173 |
||||
38. T.A.Khalyavka, S.V.Camyshan, L.A.Davydenko et al. Funct. Mater. 25, 067 (2018). | ||||
39. Hurum, D. C., Agrios, A. G., Gray, K. A. et al. J. Phys. Chem. B 107, 4545 (2003). https://doi.org/10.1021/jp0273934 |
||||
40. Durodola S. S., Olaniran K. Ore, Odunayo T. et al. J. Fluoresc. 34, 501 (2024). https://doi.org/10.1007/s10895-023-03332-x |
||||
41. Gusain, R., Gupta, K., Joshi, P. & Khatri, O. P. Advances in Colloid and Interface Science 272, 102009 (2019). https://doi.org/10.1016/j.cis.2019.102009 |
||||
42. Liu, Z., Liu, X., Lu, Q. et al. J. Taiwan Inst. Chem. Eng. 96, 214 (2019). https://doi.org/10.1016/j.jtice.2018.11.013 |
||||
43. Bai, H., Zhou, J., Zhang, H. & Tang, G. Colloids Surfaces B Biointerfaces 150, 68 (2017). https://doi.org/10.1016/j.colsurfb.2016.11.017 |
||||
44. Luo Z. H., Wei C. L., He N. N. et al. J. Nanomater. 2015, (2015). | ||||
45. Rachna, Rani, M. & Shanker, U. J. Environ. Manage. 248, 109340 (2019). https://doi.org/10.1016/j.jenvman.2019.109340 |
||||
46. Zhao, Z. & Omer, A. A. Env. Sci. Pol. Res. 27, 17530-17540 (2019). https://doi.org/10.1007/s11356-019-05787-7 |
||||
47. Cheng K., Cai Z., Fu J. et al. Chem. Eng. J. 358, 1155 (2019). https://doi.org/10.1016/j.cej.2018.10.114 |
||||
48. Sun X., He W., Hao X. et al. J. Hazard. Mater. 412, 125221 (2021). https://doi.org/10.1016/j.jhazmat.2021.125221 |
||||
49. Daneshvar, N., Salari, D. & Khataee, A. R. J. Photochem. Photobiol. A Chem. 162, 317 (2004). https://doi.org/10.1016/S1010-6030(03)00378-2 |
||||
50. Minh Huong L., Minh Dat N., Thanh Hoai N. et al. Environmental Nanotechnology, Monitoring and Management. 22, 100966 (2024). https://doi.org/10.1016/j.enmm.2024.100966 |
||||
51. Islam, S. Z., Nagpure, S., Kim, D. Y. & Rankin, S. E. Inorganics 5, 15 (2017). https://doi.org/10.3390/inorganics5010015 |
||||
52. Azmi R., Hwang S., Yin W. et al. ACS Energy Lett. 3, 1241 (2018). https://doi.org/10.1021/acsenergylett.8b00493 |
||||
53. Chudinovych O.V., Myroniuk D.V., Myroniuk L.A. et al. Funct. Mater. 30, 171 (2023). | ||||
54. Nga, P. T. T., Duc, N. M., Van Minh, N. & Lien, N. H. Vietnam J. Chem. 60, 389 (2022). https://doi.org/10.1002/vjch.202100171 |
||||
55. Liu, Q., Li, X., Wan, Z., Xu, D. & Liu, C. Colloids Surfaces A Physicochem. Eng. Asp. 700, 134765 (2024). https://doi.org/10.1016/j.colsurfa.2024.134765 |
||||
56. Vela, N., Martínez-Menchón, M., Navarro, G. et al. J. Photochem. Photobiol. A Chem. 232, 32 (2012). https://doi.org/10.1016/j.jphotochem.2012.02.003 |
||||
57. Sliem, M. A., Salim, A. Y. & Mohamed, G. G. Vol. 371, Pages 327 - 335 371, 327 (2019). https://doi.org/10.1016/j.jphotochem.2018.11.028 |
||||
58. Rachna, Rani, M. & Shanker, J. Photochem. Photobiol. A Chem. 381, (2019). https://doi.org/10.1016/j.jphotochem.2019.111861 |
||||
59. Batchamen Mougnol, J. B., Waanders, F., Ntwampe, S. K. O. et al. Environ. Syst. Res. 11, 25 (2022). https://doi.org/10.1186/s40068-022-00271-7 |
||||
60. Chauhan H. A., Rafatullah M. A., Khozema A. et al. J. Water Process Eng. 47, 102714 (2022). https://doi.org/10.1016/j.jwpe.2022.102714 |
||||
61. Manna, M., Sen, S. Appl. Surf. Sci. 630, (2023). https://doi.org/10.1016/j.apsusc.2023.157523 |
||||
62. Tandorn, S., Lamkhao, S., Thiraphatchotiphum C. et al. Chem. Eng. J. 457, 141190 (2023). https://doi.org/10.1016/j.cej.2022.141190 |
||||
63. Zhao J., Tian W., Chu M. et al. Chemosphere 297, 134175 (2022). https://doi.org/10.1016/j.chemosphere.2022.134175 |
||||
64. Dai Y., Wang Y., Zuo G. et al. Chemosphere 293, (2022). https://doi.org/10.1016/j.chemosphere.2022.133576 |
||||
65. Dai, Y. Wang Y., Zuo G. et al. Appl. Surf. Sci. 572, (2022). https://doi.org/10.1016/j.apsusc.2021.151421 |
||||
66. Wang Y., Feng W., Gong A. et al. Catal. Letters 154, 3574 (2024). https://doi.org/10.1007/s10562-024-04612-2 |
||||
67. Marques M., Cervello D., Mari M. et al. Polycycl. Aromat. Compd. 40, 524 (2020). | ||||
68. Ali A., Raza T., Adeel F. et al. Synth. Met. 287, (2022). https://doi.org/10.1016/j.synthmet.2022.117072 |
||||
69. Al-Hunaiti, A., Ghazzy, A. M., Mahmoud, N. T. Chem. Eng. J. Adv. 19, (2024). https://doi.org/10.1016/j.ceja.2024.100631 |
||||
70. Li, T., Wang, M., Hao, Y. Sci. Total Environ. 857, (2023). https://doi.org/10.1016/j.scitotenv.2022.159055 |
||||
71. Yang G., Jiang Y., Yin B. et al. Environ. Sci. Pollut. Res. 30, 70260 (2023). https://doi.org/10.1007/s11356-023-27334-1 |
||||
72. Qiao, M., Fu, L. & Barcelo, D. Process Saf. Environ. Prot. 159, 376 (2022). https://doi.org/10.1016/j.psep.2022.01.015 |
||||
73. Huang R., Zhang M., Zheng Z. et al. NANOMATERIALS 11, (2021). https://doi.org/10.3390/nano11112776 |
||||
74. Lu J., Guo Z., Li M. et al. Chemosphere 318, (2023). https://doi.org/10.1016/j.chemosphere.2023.137966 |
||||
75. Brindhadevi K., Kim T P, Sulaiman A. et al. Environ. Res. 252, (2024). https://doi.org/10.1016/j.envres.2024.118454 |
||||
76. Karam F. F., Hussein F. H., Baqir S. J. et al. Int. J. Photoenergy 2014, 1 (2014). https://doi.org/10.1155/2014/503825 |
||||
77. Soni, H., Kumar, N., Patel, K. & Kumar, R. N. Polycycl. Aromat. Compd. 40, 257 (2020). https://doi.org/10.1080/10406638.2017.1411956 |
||||
78. Saloot, M. K., Borghei, S. M. & Shirazi, R. H. S. M. Desalin. Water Treat. 220, 287 (2021). https://doi.org/10.5004/dwt.2021.26939 |
||||
79. Ji H., Liu W., Sun F. et al. Chem. Eng. J. 419, (2021). | ||||
80. Al-Madanat, O., Alsalka, Y., Dillert, R. et al. Catalysts 11, 1 (2021). https://doi.org/10.3390/catal11010107 |
||||
81. Quynh, T. X. & Toan, V. D. Ecol. Environ. Conserv. 28, 606 (2022). https://doi.org/10.53550/EEC.2022.v28i02.004 |
||||
82. McQueen A. D., Ballentine M. L., May L. R. et al. ACS Environ. Sci. Technol. Water 2, 137 (2022). https://doi.org/10.1021/acsestwater.1c00299 |
||||
83. Zhang J., Yu F., Ke X. et al. Molecules 27, (2022). https://doi.org/10.3390/molecules27196654 |
||||
84. Alomairy, S., Gnanasekaran, L., Rajendran, S. & Alsanie, W. F. Chemosphere 343, 140274 (2023). https://doi.org/10.1016/j.chemosphere.2023.140274 |
||||
85. Meenu, N., Rani, M. & Shanker, U. Environ. Sci. Adv. 3, 249 (2023). https://doi.org/10.1039/D3VA00245D |
||||
86. Martínez-Vargas B. L., Cruz-Ramírez M., Díaz-Real J. A. et al. J. Photchem. Photobiol. A: Chemistry, 369, 85 (2019). https://doi.org/10.1016/j.jphotochem.2018.10.010 |
||||
87. Guo Y., Dai Y., Zhao W. et al. Appl. Catal. B Environ. 237, 273 (2018). | ||||
88. Woo, O. T., Chung, W. K., Wong, K. H. et al. J. Hazard. Mater. 168, 1192 (2009). https://doi.org/10.1016/j.jhazmat.2009.02.170 |
||||
89. Fu J., Kyzas G. Z., Cai Z. et al. Chem. Eng. J. 335, 290 (2018). https://doi.org/10.1016/j.cej.2017.10.163 |
||||
90. Theerakarunwong, C. D. & Phanichphant, S. Water. Air. Soil Pollut. 229, (2018). https://doi.org/10.1007/s11270-018-3951-6 |
||||
91. Shanker, U., Jassal, V. & Rani, M. J. Environ. Manage. 204, 337 (2017). https://doi.org/10.1016/j.jenvman.2017.09.015 |
||||
92. Rachna, Rani, M. & Shanker, U. Chem. Eng. J. 348, 754 (2018). https://doi.org/10.1016/j.cej.2018.04.185 |
||||
93. Yang X., Cai H., Bao M. et al. Chem. Eng. J. 334, 355 (2018). https://doi.org/10.1016/j.cej.2017.09.104 |
||||
94. Rachna, Rani, M. & Shanker, U. J. Photochem. Photobiol. A Chem. 381, 111861 (2019). https://doi.org/10.1016/j.jphotochem.2019.111861 |
||||
95. Kudlek, E. & Dudziak, M. Water Sci. Technol. 77, 2407 (2018). https://doi.org/10.2166/wst.2018.192 |
||||
96. Darkhosh, F., Lashanizadegan, M., Mahjoub, A. R. & Cheshme Khavar, A. H. Solid State Sci. 91, 61 (2019). https://doi.org/10.1016/j.solidstatesciences.2019.03.009 |
||||
97. Zhang L., Xing Z., Zhang H. et al. Appl. Catal. B Environ. 180, 521 (2016). https://doi.org/10.1016/j.apcatb.2015.07.002 |
||||
98. Długosz, M., Waś, J., Szczubiałka, K. & Nowakowska, M. J. Mater. Chem. A 2, 6931 (2014). https://doi.org/10.1039/c3ta14951j |
||||
99. Nasir A. M., Jaafar J., Aziz F. et al. J. Water Process Eng. 36, (2020). https://doi.org/10.1016/j.jwpe.2020.101300 |
||||
100. Zhang K., Zhou W., Zhang X. et al. Appl. Catal. B Environ. 206, 336 (2017). | ||||
101. Dalponte Dallabona, I., Mathias, Á. L. & Jorge, R. M. M. Colloids Surfaces A Physicochem. Eng. Asp. 627, (2021). https://doi.org/10.1016/j.colsurfa.2021.127159 |
||||
102. Ferreira, A. V. de T. P. F., Barbosa L. V., de Souza S. D. et al. J. Photochem. Photobiol. A Chem. 419, 113483 (2021). https://doi.org/10.1016/j.jphotochem.2021.113483 |
||||
103. Anusuyadevi, P. R., Riazanova, A. V, Hedenqvist et al. ACS Omega 5, 22411 (2020). https://doi.org/10.1021/acsomega.0c02872 |
||||
104. Bleasdale-Pollowy, A., Chan, C., Leshuk, T. M. C. & Gu, F. Environ. Technol. Innov. 33, 103492 (2024). https://doi.org/10.1016/j.eti.2023.103492 |
||||