Funct. Mater. 2024; 31 (4): 538-545.

doi:https://doi.org/10.15407/fm31.04.538

Analysis of piezoelectric properties of barium titanate (BaTiO3) using ANSYS APDL: a specialized study in electromechanical engineering

Safaa A. Jasim1, Suaad M. Jiaad2, Zainab Talib Turki3

1 Ministry of Education, Iraq
2Department of Electromechanics, University of Technology, Iraq
3College of Pharmacy,University of Karbala, Iraq

Abstract: 

Barium titanate is an important ceramic material in piezoelectric devices. Barium titanate (BT) was prepared via a hydrothermal process at 200 °C for 24 hours. This study initially focused on characterizing barium titanate nanoparticles (BaTiO3) by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) was used to determine the crystalline structure of the material and the functional groups present in the sample. Additionally, the structure and composition of BaTiO3 were confirmed using an energy dispersive spectroscopy (EDS). A disk of barium titanite was made and sintered at a temperature of 1000°C for 4 hours. To simulate the material to confirm its piezoelectric properties, the density was measured and impedance spectra were studied to determine the relative and absolute permittivity; this data was then entered into APDL ANSYS program. The complexity of the resonant modes present in the material causes a piezoelectric response with multiple peaks over a wide frequency range. These peaks can be used to study situations where a specific frequency response of the material is required.

Keywords: 
hydrothermal, barium titanate, APDL ANSYS, piezoelectric properties, resonant.
References: 
1. Yun JM, Shin JH, Ryu J, Shinde NM, Kim KH. Piezoelectric performance of cubic-phase BaTiO3 nanoparticles vertically aligned via electric field. Adv Sustain Syst. 2018;2(1700133).
https://doi.org/10.1002/adsu.201700133
 
 
2. Bhalla AS, Guo R, Roy R.. Mater Res Innov.4(1), 3, 2004.
 
3. Sun E, Cao W., Prog Mater Sci., 65, 124, 2014.
https://doi.org/10.1016/j.pmatsci.2014.03.006
 
4. Uchino K. Ferroelectric devices. CRC Press; 2010.
 
5. Jaffe B, Cook WR, Jaffe H. Piezoelectric ceramics. Elsevier; 2012.
 
6. Lappalainen J, Lantto V, Hiltunen J., J Electroceram., 17(1), 102, 2006.
 
https://doi.org/10.1007/s10832-006-5020-.
 
7. Kelley KP, Yilmaz DE, Collins L, Sharma Y, Lee HN, et al, Phys Rev Mater., 4(2), 024407, 2020.
https://doi.org/10.1103/PhysRevMaterials.4.024407
 
8. Yun JM, Shin JH, Ryu J, Shinde NM, Kim KH., Adv Sustain Syst., 2, 1700133, 2018.
https://doi.org/10.1002/adsu.201700133
 
9. Xue D, Liu W, Zhou C, Ren X, Actuators. 6(3), 24, 2017.
https://doi.org/10.3390/act6030024
 
10. Xue D, Liu W, Ren X., Actuators, 6(3), 24, 2017.
https://doi.org/10.3390/act6030024
 
11. Kovalenko O, Škapin S, Kržmanc MM, Vengust D, Ceram Int., 48(9), 1198202, 2022
https://doi.org/10.1016/j.ceramint.2022.01.048
 
12. Liu Y, Chen T, Zheng J, Zhu Z, Huang Z, Hu C, Liu B., Chem Eng J.,15, 488, 150768, 2024.
https://doi.org/10.1016/j.cej.2024.150768
 
13. Singh M, Yadav BC, Ranjan A, Kaur M, Gupta SK., Sens Actuators B Chem., 31, 241, 1170-8, 2017.
https://doi.org/10.1016/j.snb.2016.10.018
 
14. Žagar K, Rečnik A, Šturm S, Gajović A, Čeh M,. Mater Res Bull. 46(3), 366, 2011.
https://doi.org/10.1016/j.materresbull.2010.12.012
 
15. He F, Ren W, Liang G, Shi P, Wu X, Chen X., Ceram Int. May 1,; 39, 2013
https://doi.org/10.1016/j.ceramint.2012.10.118
 
16. Sandi D, Supriyanto A, Iriani Y. The effects of sintering temperature on dielectric constant of Barium Titanate (BaTiO3). In: IOP Conf Ser Mater Sci Eng.,107(1):012069. IOP Publishing, 2016.
https://doi.org/10.1088/1757-899X/107/1/012069
 
17. Nayak S, Sahoo B, Chaki TK, Khastgir D, RSC Adv., 4(3), 1212, 2014.
https://doi.org/10.1039/C3RA44815K
 
18. Liu W, Lu C, Li H, Tay RY, Sun L, Wang X, et al, J Mater Chem A., 4(10), 3754, 2016, .
https://doi.org/10.1039/C6TA00159A
 
19. Mongia RK, Bhartia P, Int J Microwave Millimeter Wave Comput Aided Eng., 4(3), 230, 1994.
https://doi.org/10.1002/mmce.4570040304
 
20. Bolivar PH, Brucherseifer M, Rivas JG, Gonzalo R, et al, IEEE Trans Microwave Theory Tech., 51(4), 1062, 2023.
https://doi.org/10.1109/TMTT.2003.809693
 
21. Nayak S, Sahoo B, Chaki TK, Khastgir D., RSC Adv., 4(3), 1212, 2014.
https://doi.org/10.1039/C3RA44815K
 
 
22. Kalyani AK, Brajesh K, Senyshyn A, Ranjan R., Appl Phys Lett., 104(25), 252906, 2014.
https://doi.org/10.1063/1.4885516
 
23. Zhao C, Wang H, Xiong J, Wu J., Dalton Trans., 45(13), 6466, 2016,
https://doi.org/10.1039/C6DT00672H
 
24. Zhou C, Liu W, Xue D, Ren X, Bao H, et al., Appl Phys Lett., 100(22), 222910, 2012

Current number: