Funct. Mater. 2024; 31 (4): 538-545.
Analysis of piezoelectric properties of barium titanate (BaTiO3) using ANSYS APDL: a specialized study in electromechanical engineering
1 Ministry of Education, Iraq
2Department of Electromechanics, University of Technology, Iraq
3College of Pharmacy,University of Karbala, Iraq
Barium titanate is an important ceramic material in piezoelectric devices. Barium titanate (BT) was prepared via a hydrothermal process at 200 °C for 24 hours. This study initially focused on characterizing barium titanate nanoparticles (BaTiO3) by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) was used to determine the crystalline structure of the material and the functional groups present in the sample. Additionally, the structure and composition of BaTiO3 were confirmed using an energy dispersive spectroscopy (EDS). A disk of barium titanite was made and sintered at a temperature of 1000°C for 4 hours. To simulate the material to confirm its piezoelectric properties, the density was measured and impedance spectra were studied to determine the relative and absolute permittivity; this data was then entered into APDL ANSYS program. The complexity of the resonant modes present in the material causes a piezoelectric response with multiple peaks over a wide frequency range. These peaks can be used to study situations where a specific frequency response of the material is required.
1. Yun JM, Shin JH, Ryu J, Shinde NM, Kim KH. Piezoelectric performance of cubic-phase BaTiO3 nanoparticles vertically aligned via electric field. Adv Sustain Syst. 2018;2(1700133). https://doi.org/10.1002/adsu.201700133 |
||||
2. Bhalla AS, Guo R, Roy R.. Mater Res Innov.4(1), 3, 2004. | ||||
3. Sun E, Cao W., Prog Mater Sci., 65, 124, 2014. https://doi.org/10.1016/j.pmatsci.2014.03.006 |
||||
4. Uchino K. Ferroelectric devices. CRC Press; 2010. | ||||
5. Jaffe B, Cook WR, Jaffe H. Piezoelectric ceramics. Elsevier; 2012. | ||||
6. Lappalainen J, Lantto V, Hiltunen J., J Electroceram., 17(1), 102, 2006. | ||||
https://doi.org/10.1007/s10832-006-5020-. | ||||
7. Kelley KP, Yilmaz DE, Collins L, Sharma Y, Lee HN, et al, Phys Rev Mater., 4(2), 024407, 2020. https://doi.org/10.1103/PhysRevMaterials.4.024407 |
||||
8. Yun JM, Shin JH, Ryu J, Shinde NM, Kim KH., Adv Sustain Syst., 2, 1700133, 2018. https://doi.org/10.1002/adsu.201700133 |
||||
9. Xue D, Liu W, Zhou C, Ren X, Actuators. 6(3), 24, 2017. https://doi.org/10.3390/act6030024 |
||||
10. Xue D, Liu W, Ren X., Actuators, 6(3), 24, 2017. https://doi.org/10.3390/act6030024 |
||||
11. Kovalenko O, Škapin S, Kržmanc MM, Vengust D, Ceram Int., 48(9), 1198202, 2022 https://doi.org/10.1016/j.ceramint.2022.01.048 |
||||
12. Liu Y, Chen T, Zheng J, Zhu Z, Huang Z, Hu C, Liu B., Chem Eng J.,15, 488, 150768, 2024. https://doi.org/10.1016/j.cej.2024.150768 |
||||
13. Singh M, Yadav BC, Ranjan A, Kaur M, Gupta SK., Sens Actuators B Chem., 31, 241, 1170-8, 2017. https://doi.org/10.1016/j.snb.2016.10.018 |
||||
14. Žagar K, Rečnik A, Šturm S, Gajović A, Čeh M,. Mater Res Bull. 46(3), 366, 2011. https://doi.org/10.1016/j.materresbull.2010.12.012 |
||||
15. He F, Ren W, Liang G, Shi P, Wu X, Chen X., Ceram Int. May 1,; 39, 2013 https://doi.org/10.1016/j.ceramint.2012.10.118 |
||||
16. Sandi D, Supriyanto A, Iriani Y. The effects of sintering temperature on dielectric constant of Barium Titanate (BaTiO3). In: IOP Conf Ser Mater Sci Eng.,107(1):012069. IOP Publishing, 2016. https://doi.org/10.1088/1757-899X/107/1/012069 |
||||
17. Nayak S, Sahoo B, Chaki TK, Khastgir D, RSC Adv., 4(3), 1212, 2014. https://doi.org/10.1039/C3RA44815K |
||||
18. Liu W, Lu C, Li H, Tay RY, Sun L, Wang X, et al, J Mater Chem A., 4(10), 3754, 2016, . https://doi.org/10.1039/C6TA00159A |
||||
19. Mongia RK, Bhartia P, Int J Microwave Millimeter Wave Comput Aided Eng., 4(3), 230, 1994. https://doi.org/10.1002/mmce.4570040304 |
||||
20. Bolivar PH, Brucherseifer M, Rivas JG, Gonzalo R, et al, IEEE Trans Microwave Theory Tech., 51(4), 1062, 2023. https://doi.org/10.1109/TMTT.2003.809693 |
||||
21. Nayak S, Sahoo B, Chaki TK, Khastgir D., RSC Adv., 4(3), 1212, 2014. https://doi.org/10.1039/C3RA44815K |
||||
22. Kalyani AK, Brajesh K, Senyshyn A, Ranjan R., Appl Phys Lett., 104(25), 252906, 2014. https://doi.org/10.1063/1.4885516 |
||||
23. Zhao C, Wang H, Xiong J, Wu J., Dalton Trans., 45(13), 6466, 2016, https://doi.org/10.1039/C6DT00672H |
||||
24. Zhou C, Liu W, Xue D, Ren X, Bao H, et al., Appl Phys Lett., 100(22), 222910, 2012 |