Funct. Mater. 2024; 31 (4): 546-556.
Improving the thermophysical properties of polymer composites
1Kherson State Maritime Academy, Ukraine
2Danube Institute of the National University “Odesa Maritime Academy”, Ukraine
To improve the thermophysical properties of polymer composites, their physicochemical modification was carried out by introducing a microdispersed filler of synthesised aluminium-copper charge into the epoxy resin. Based on the dynamics of thermophysical properties depending on the amount of filler in the synthesised aluminium-copper charge, the optimal content of the additive in the epoxy compound was determined, which is 2...2.5 mass%. The introduction of filler into the epoxy oligomer ensures the production of composites with maximum values of thermal properties. The mechanism of formation of a heterogeneous structure of composites in the presence of microdispersed filler is substantiated. There are three structural levels that are formed after the polymerisation of the material: micro-, meso- and macrostructure. It is shown that in the formation of heterogeneous composites, there is a hierarchical combination of structural levels, and the dominant influence of one of them is determined by the nature and content of the filler. It is substantiated that the structure and properties of the composites are determined by the course of structure formation processes: within a single level, between different levels in a cluster, and between clusters.
1. V.M. Kindrachuk, A. Klunker, Strength of Materials, 52, 967 (2020) https://doi.org/10.1007/s11223-021-00251-9 |
||||
2. V.M. Kindrachuk, B.A. Galanov, Journal of the Mechanics and Physics of Solids, 63, 432 (2014). https://doi.org/10.1016/j.jmps.2013.08.008 |
||||
3. W. Zhang, Y. Xu, Y. Shi et al., Corrosion Science, 110422, 1 (2022) https://doi.org/10.1016/j.corsci.2022.110422 |
||||
4. V.M. Kindrachuk, B.A. Galanov, V.V. Kartuzovl et al., Nanotechnology, 17, 1104 (2006) https://doi.org/10.1088/0957-4484/17/4/043 |
||||
5. V. Korzhyk, O. Berdnikova, P. Stukhliak et al., Solid State Phenomena, 355, 123 (2024). https://doi.org/10.4028/p-qjM7yA |
||||
6. V.M. Kindrachuk, J.F. Unger, International Journal of Fatigue, 100, 215 (2017) https://doi.org/10.1016/j.ijfatigue.2017.03.015 |
||||
7. P. Mohan, Polym. Plast. Technol. Eng., 52, 107 (2013). https://doi.org/10.1080/03602559.2012.727057 |
||||
8. P.D. Stukhlyak, M.M. Mytnyk, V.O. Orlov, Materials Science, 37, 80 (2001). https://doi.org/10.1023/A:1012338422984 |
||||
9. O.V. Totosko, P.D. Stukhlyak, A.H. Mykytyshyn et al., Funct. Mater., 27, 4, 760 (2020). https://doi.org/10.15407/fm27.04.760 |
||||
10. N.R. Paluvai, S. Mohanty, S.K. Nayak, Polymer-Plastics Technology and Engineering, 53, 1723 (2014). https://doi.org/10.1080/03602559.2014.919658 |
||||
11. H. Farzana, H. Mehdi, J. Compos. Mater, 40, 1511 (2006). https://doi.org/10.1177/0021998306067321 |
||||
12. E.O. Shaffer, F.J. Mcgarry, Lan Hoang, Polymer Engineering & Science, 36, 2375 (1996). https://doi.org/10.1002/pen.10635 |
||||
13. A. Momber, M. Irmer, N. Gluck, Cold Reg. Sci. Technol, 127, 76 (2016). https://doi.org/10.1016/j.coldregions.2016.03.013 |
||||
14. I.G. Dobrotvor, P.D. Stukhlyak, A.G. Mykytyshyn et al., Strength Mater, 53, 283 (2021). https://doi.org/10.1007/s11223-021-00287-x |
||||
15. N. Dolgov, P. Stukhlyak, O. Totosko et al., Mechanics of Advanced Materials and Structure, 1 (2023) | ||||
16. P.D. Stukhlyak, K.M. Moroz, Materials Science, 46, 455 (2011). https://doi.org/10.1007/s11003-011-9312-x |
||||
17. P.D. Stukhlyak, O.S. Holotenko, I.H. Dobrotvor et al., Materials Science, 5, 208. (2015). https://doi.org/10.1007/s11003-015-9830-z |
||||
18. A.V. Akimov, A.V. Buketov, A.А. Sapronov et al., Composites: Mechanics, Computations, Applications, 10, 117 (2019) https://doi.org/10.1615/CompMechComputApplIntJ.2018026989 |
||||
19. F.B. Diniz, G.F. De Andrade, C.R. Martins et al., Prog. Org. Coat, 76, 912 (2013). https://doi.org/10.1016/j.porgcoat.2013.02.010 |
||||
20. C. Zhou, X. Lu, Z. Xin et al., Prog. Org. Coat, 76, 1178 (2013). https://doi.org/10.1016/j.porgcoat.2013.03.013 |
||||
21. P.D. Stukhlyak, Soviet Journal of Friction and Wear (English translation of Trenie i Iznos), 7, 138 (1986). | ||||
22. P.D. Stukhlyak, M.M. Bliznets, Soviet Journal of Friction and Wear (English translation of Trenie i Iznos), 10, 70 (1989). | ||||
23. P.D. Stukhlyak, M.M. Bliznets, Soviet Journal of Friction and Wear (English translation of Trenie i Iznos), 8, 122 (1987). | ||||
24. P.D. Stukhlyak, A.Z. Skorokhod, O.R. Yurkevich, Soviet Materials Science, 25, 380 (1990). https://doi.org/10.1007/BF00724268 |
||||
25. M. Brailo, A. Buketov, S. Yakushchenko et al., Materials Performance and Characterization, 7, 275 (2018). https://doi.org/10.1520/MPC20170161 |
||||
26. A. Buketov, O. Sapronov, M. Brailo et al., Advances in Materials Science and Engineering. 8183761, 1 (2019) https://doi.org/10.1155/2019/8183761 |
||||
27. A.V. Buketov, O.O. Sapronov, M.V.Brailo, Strength of Materials, 46, 717 (2014). https://doi.org/10.1007/s11223-014-9605-z |
||||
28. S. Verma, S. Mohanty, S. Nayak, Journal of coatings technology and research, 16, 307 (2019). https://doi.org/10.1007/s11998-018-00174-2 |
||||
29. A. Olajire Abass, Journal of Molecular Liquids, 269, 572 (2018). https://doi.org/10.1016/j.molliq.2018.08.053 |
||||
30. C. Smith, T. Siewert, B. Mishra et al., Offshore Oil and Gas Operation Facilities, 334, 1 (2004). | ||||
31. A. Momber, M. Irmer, N. Gluck, Cold Reg. Sci. Technol, 127, 109 (2016). https://doi.org/10.1016/j.coldregions.2016.04.009 |
||||
32. M. Dekkers, D. Heikens, J Appl. Polym. Sci, 28, 3809 (1983). https://doi.org/10.1002/app.1983.070281220 |
||||
33. B. Ramezanzadeh, S. Niroumandrad, A. Ahmadi et al., Corr. Sci., 103, 283 (2016). https://doi.org/10.1016/j.corsci.2015.11.033 |
||||
34. Y. Fu, X.-Q. Feng, B. Lauke et al., Composites: Part B, 39, 933 (2008). https://doi.org/10.1016/j.compositesb.2008.01.002 |
||||
35. H. Ismail, H. Chia, Poly. Test, 17, 199 (1998). https://doi.org/10.1016/S0142-9418(97)00043-3 |
||||
36. Z. Guo, T. Pereira, O. Choi et al., J. Mater. Chem, 16, 2800 (2006). https://doi.org/10.1039/b603020c |
||||
37. M. Arroyo, M. Lopezmanchado, J. Valentin et al., Composites Science and Technology, 67, 1330 (2007). https://doi.org/10.1016/j.compscitech.2006.09.019 |
||||
38. A. Buketov, S. Smetankin, P. Maruschak et al., Transport, 35, 679 (2020). https://doi.org/10.3846/transport.2020.14286 |
||||
39. A.V. Buketov, S.A. Smetankin, A.V. Akimov et al., Functional Materials, 26, 403 (2019). doi:https://doi.org/10.15407/fm26.02.403 |
||||
40. A.V. Buketov, M.V. Brailo, O.S. Kobel′nyk et al., Materials Science, 52, 25 (2016). https://doi.org/10.1007/s11003-016-9922-4 |
||||
41. A. Buketov, M. Brailo, S. Yakushchenko et al., Advances in Materials Science and Engineering, 6378782, 1 (2018). https://doi.org/10.1155/2018/6378782 |
||||
42. A. Buketov, S. Smetankin, E. Lysenkov et al., Advances in Materials Science and Engineering, 6361485, 1 (2020) https://doi.org/10.1155/2020/6361485 |
||||
43. F. Caruso, Adv. Mater, 13, 11 (2001). https://doi.org/10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N |
||||
44. O. Sizonenko, G. Baglyuk, A. Torpakov et al., Powder Metallurgy and Metal Ceramics, 51, 129 (2012). https://doi.org/10.1007/s11106-012-9407-4 |
||||
45. O. Syzonenko, E. Sheregii, S. Prokhorenko et al., Machines. Technologies. Materials, 11, 171 (2017). | ||||
46. A.V. Stukhlyak, I.G. Dobrotvor et al., Strength of Materials, 41, 431 (2009). https://doi.org/10.1007/s11223-009-9136-1 |
||||
47. I.H. Buketov, Materials Science, 45, 582 (2009). https://doi.org/10.1007/s11003-010-9217-0 |
||||
48. J. Jordan, K. Jacob, R. Tannenbaum et al., Materials Science and Engineering, A 393, 1 (2005). https://doi.org/10.1016/j.msea.2004.09.044 |
||||
49. X. Ji, J. Jing, B. Jiang, Polym. Eng. Sci, 42, 983 (2002). https://doi.org/10.1002/pen.11007 |
||||