Funct. Mater. 2024; 31 (4): 546-556.

doi:https://doi.org/10.15407/fm31.04.546

Improving the thermophysical properties of polymer composites

A.V. Buketov1, Yu.M. Shulga1,2, V.Yu. Strelchenko1, V.V. Sotsenko1

1Kherson State Maritime Academy, Ukraine
2Danube Institute of the National University “Odesa Maritime Academy”, Ukraine

Abstract: 

To improve the thermophysical properties of polymer composites, their physicochemical modification was carried out by introducing a microdispersed filler of synthesised aluminium-copper charge into the epoxy resin. Based on the dynamics of thermophysical properties depending on the amount of filler in the synthesised aluminium-copper charge, the optimal content of the additive in the epoxy compound was determined, which is 2...2.5 mass%. The introduction of filler into the epoxy oligomer ensures the production of composites with maximum values of thermal properties. The mechanism of formation of a heterogeneous structure of composites in the presence of microdispersed filler is substantiated. There are three structural levels that are formed after the polymerisation of the material: micro-, meso- and macrostructure. It is shown that in the formation of heterogeneous composites, there is a hierarchical combination of structural levels, and the dominant influence of one of them is determined by the nature and content of the filler. It is substantiated that the structure and properties of the composites are determined by the course of structure formation processes: within a single level, between different levels in a cluster, and between clusters.

Keywords: 
polymer, composite, heat resistance, heat resistance, model, mechanism, transport.
References: 
1. V.M. Kindrachuk, A. Klunker, Strength of Materials, 52, 967 (2020)
https://doi.org/10.1007/s11223-021-00251-9
 
2. V.M. Kindrachuk, B.A. Galanov, Journal of the Mechanics and Physics of Solids, 63, 432 (2014).
https://doi.org/10.1016/j.jmps.2013.08.008
 
3. W. Zhang, Y. Xu, Y. Shi et al., Corrosion Science, 110422, 1 (2022)
https://doi.org/10.1016/j.corsci.2022.110422
 
4. V.M. Kindrachuk, B.A. Galanov, V.V. Kartuzovl et al., Nanotechnology, 17, 1104 (2006)
https://doi.org/10.1088/0957-4484/17/4/043
 
5. V. Korzhyk, O. Berdnikova, P. Stukhliak et al., Solid State Phenomena, 355, 123 (2024).
https://doi.org/10.4028/p-qjM7yA
 
6. V.M. Kindrachuk, J.F. Unger, International Journal of Fatigue, 100, 215 (2017)
https://doi.org/10.1016/j.ijfatigue.2017.03.015
 
7. P. Mohan, Polym. Plast. Technol. Eng., 52, 107 (2013).
https://doi.org/10.1080/03602559.2012.727057
 
8. P.D. Stukhlyak, M.M. Mytnyk, V.O. Orlov, Materials Science, 37, 80 (2001).
https://doi.org/10.1023/A:1012338422984
 
9. O.V. Totosko, P.D. Stukhlyak, A.H. Mykytyshyn et al., Funct. Mater., 27, 4, 760 (2020).
https://doi.org/10.15407/fm27.04.760
 
10. N.R. Paluvai, S. Mohanty, S.K. Nayak, Polymer-Plastics Technology and Engineering, 53, 1723 (2014).
https://doi.org/10.1080/03602559.2014.919658
 
11. H. Farzana, H. Mehdi, J. Compos. Mater, 40, 1511 (2006).
https://doi.org/10.1177/0021998306067321
 
12. E.O. Shaffer, F.J. Mcgarry, Lan Hoang, Polymer Engineering & Science, 36, 2375 (1996).
https://doi.org/10.1002/pen.10635
 
13. A. Momber, M. Irmer, N. Gluck, Cold Reg. Sci. Technol, 127, 76 (2016).
https://doi.org/10.1016/j.coldregions.2016.03.013
 
14. I.G. Dobrotvor, P.D. Stukhlyak, A.G. Mykytyshyn et al., Strength Mater, 53, 283 (2021).
https://doi.org/10.1007/s11223-021-00287-x
 
15. N. Dolgov, P. Stukhlyak, O. Totosko et al., Mechanics of Advanced Materials and Structure, 1 (2023)
 
16. P.D. Stukhlyak, K.M. Moroz, Materials Science, 46, 455 (2011).
https://doi.org/10.1007/s11003-011-9312-x
 
17. P.D. Stukhlyak, O.S. Holotenko, I.H. Dobrotvor et al., Materials Science, 5, 208. (2015).
https://doi.org/10.1007/s11003-015-9830-z
 
18. A.V. Akimov, A.V. Buketov, A.А. Sapronov et al., Composites: Mechanics, Computations, Applications, 10, 117 (2019)
https://doi.org/10.1615/CompMechComputApplIntJ.2018026989
 
19. F.B. Diniz, G.F. De Andrade, C.R. Martins et al., Prog. Org. Coat, 76, 912 (2013).
https://doi.org/10.1016/j.porgcoat.2013.02.010
 
20. C. Zhou, X. Lu, Z. Xin et al., Prog. Org. Coat, 76, 1178 (2013).
https://doi.org/10.1016/j.porgcoat.2013.03.013
 
21. P.D. Stukhlyak, Soviet Journal of Friction and Wear (English translation of Trenie i Iznos), 7, 138 (1986).
 
22. P.D. Stukhlyak, M.M. Bliznets, Soviet Journal of Friction and Wear (English translation of Trenie i Iznos), 10, 70 (1989).
 
23. P.D. Stukhlyak, M.M. Bliznets, Soviet Journal of Friction and Wear (English translation of Trenie i Iznos), 8, 122 (1987).
 
24. P.D. Stukhlyak, A.Z. Skorokhod, O.R. Yurkevich, Soviet Materials Science, 25, 380 (1990).
https://doi.org/10.1007/BF00724268
 
25. M. Brailo, A. Buketov, S. Yakushchenko et al., Materials Performance and Characterization, 7, 275 (2018).
https://doi.org/10.1520/MPC20170161
 
26. A. Buketov, O. Sapronov, M. Brailo et al., Advances in Materials Science and Engineering. 8183761, 1 (2019)
https://doi.org/10.1155/2019/8183761
 
27. A.V. Buketov, O.O. Sapronov, M.V.Brailo, Strength of Materials, 46, 717 (2014).
https://doi.org/10.1007/s11223-014-9605-z
 
28. S. Verma, S. Mohanty, S. Nayak, Journal of coatings technology and research, 16, 307 (2019).
https://doi.org/10.1007/s11998-018-00174-2
 
29. A. Olajire Abass, Journal of Molecular Liquids, 269, 572 (2018).
https://doi.org/10.1016/j.molliq.2018.08.053
 
30. C. Smith, T. Siewert, B. Mishra et al., Offshore Oil and Gas Operation Facilities, 334, 1 (2004).
 
31. A. Momber, M. Irmer, N. Gluck, Cold Reg. Sci. Technol, 127, 109 (2016).
https://doi.org/10.1016/j.coldregions.2016.04.009
 
32. M. Dekkers, D. Heikens, J Appl. Polym. Sci, 28, 3809 (1983).
https://doi.org/10.1002/app.1983.070281220
 
33. B. Ramezanzadeh, S. Niroumandrad, A. Ahmadi et al., Corr. Sci., 103, 283 (2016).
https://doi.org/10.1016/j.corsci.2015.11.033
 
34. Y. Fu, X.-Q. Feng, B. Lauke et al., Composites: Part B, 39, 933 (2008).
https://doi.org/10.1016/j.compositesb.2008.01.002
 
35. H. Ismail, H. Chia, Poly. Test, 17, 199 (1998).
https://doi.org/10.1016/S0142-9418(97)00043-3
 
36. Z. Guo, T. Pereira, O. Choi et al., J. Mater. Chem, 16, 2800 (2006).
https://doi.org/10.1039/b603020c
 
37. M. Arroyo, M. Lopezmanchado, J. Valentin et al., Composites Science and Technology, 67, 1330 (2007).
https://doi.org/10.1016/j.compscitech.2006.09.019
 
38. A. Buketov, S. Smetankin, P. Maruschak et al., Transport, 35, 679 (2020).
https://doi.org/10.3846/transport.2020.14286
 
39. A.V. Buketov, S.A. Smetankin, A.V. Akimov et al., Functional Materials, 26, 403 (2019).
doi:https://doi.org/10.15407/fm26.02.403
 
40. A.V. Buketov, M.V. Brailo, O.S. Kobel′nyk et al., Materials Science, 52, 25 (2016).
https://doi.org/10.1007/s11003-016-9922-4
 
41. A. Buketov, M. Brailo, S. Yakushchenko et al., Advances in Materials Science and Engineering, 6378782, 1 (2018).
https://doi.org/10.1155/2018/6378782
 
42. A. Buketov, S. Smetankin, E. Lysenkov et al., Advances in Materials Science and Engineering, 6361485, 1 (2020)
https://doi.org/10.1155/2020/6361485
 
43. F. Caruso, Adv. Mater, 13, 11 (2001).
https://doi.org/10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N
 
44. O. Sizonenko, G. Baglyuk, A. Torpakov et al., Powder Metallurgy and Metal Ceramics, 51, 129 (2012).
https://doi.org/10.1007/s11106-012-9407-4
 
45. O. Syzonenko, E. Sheregii, S. Prokhorenko et al., Machines. Technologies. Materials, 11, 171 (2017).
 
46. A.V. Stukhlyak, I.G. Dobrotvor et al., Strength of Materials, 41, 431 (2009).
https://doi.org/10.1007/s11223-009-9136-1
 
47. I.H. Buketov, Materials Science, 45, 582 (2009).
https://doi.org/10.1007/s11003-010-9217-0
 
48. J. Jordan, K. Jacob, R. Tannenbaum et al., Materials Science and Engineering, A 393, 1 (2005).
https://doi.org/10.1016/j.msea.2004.09.044
 
49. X. Ji, J. Jing, B. Jiang, Polym. Eng. Sci, 42, 983 (2002).
https://doi.org/10.1002/pen.11007
 

Current number: