Funct. Mater. 2024; 31 (4): 574-586.

doi:https://doi.org/10.15407/fm31.04.574

Optimization of CZT crystal growth by THM method

S. Galkin, O. Kolesnikov, I. Rybalka, O. Lalayants

Institute for Scintillation Materials of the National Academy of Sciences of Ukraine

Abstract: 

This work develops a numerical model for analyzing the growth conditions of Cd0.9Zn0.1Te crystals by the traveling heater method (THM) in a multi-zone electrodynamics gradient (EDG) furnace. The main focus is on determining the temperature profile and the thickness of the Te-rich solution to improve the structural homogeneity of the crystals and minimize defects. The work also proposes a dimensionless criterion based on the ratio of the thermal Rayleigh number (RaT) to the concentration Rayleigh number (RaC), which allows for evaluating the growth conditions. The calculations performed make it possible to determine the main technological parameters that ensure a nearly flat crystallization interface. The adequacy of the calculated thermal conditions was confirmed experimentally. The obtained samples showed characteristics suitable for manufacturing spectroscopic grade detectors.

Keywords: 
CZT, THM method, numerical model, growing conditions.
References: 
1. U. Cevik, E. Bacaksiz, N. Damla et al., Radiat. Meas. 43, 8, 1437, (2008). 
https://doi.org/10.1016/j.radmeas.2008.03.033
 
2. S. Del Sordo, L. Abbene, E. Caroli et al., Sensors 9, 3491 (2009). 
https://doi.org/10.3390/s90503491
 
3. A. E. Bolotnikov, S. Babalola, G. S. Camarda et al., in IEEE Trans Nucl Sci, 58, (4), 1972 (2011). 
https://doi.org/10.1109/TNS.2011.2160283
 
4. U. N. Roy, G. Camarda, Y. Cui et al., Appl. Phys. Lett. 114, 232107 (2019). 
https://doi.org/10.1063/1.5109119
 
5. J.S. Yadav, S. Savitri, J.P. Malkar NIM A 552, (2005). 
https://doi.org/10.1016/j.nima.2005.07.001
 
6, S. U. Egarievwe U. Roy; E. Agbalagba et al., IEEE Access, 8, 137530 (2020). 
https://doi.org/10.1109/ACCESS.2020.3012040
 
7. Schillebeeckx, P., Borella, A., Bruggeman, et al., Cadmium Zinc Telluride Detectors for Safeguards Applications. In: K. Iniewski, (eds) Advanced Materials for Radiation Detection. Springer, Cham. (2022). 
https://doi.org/10.1007/978-3-030-76461-6_15
 
8. K. Iniewski JINST, 9, C11001 (2014). 
https://doi.org/10.1088/1748-0221/9/11/C11001
 
9. C. G. Wahl, W. Kaye, F. Zhang et al., 2017 IEEE NSS/MIC, Atlanta, GA, USA, 2017, p.1. 
https://doi.org/10.1109/NSSMIC.2017.8532778
 
10. F. Doty, J. Butler, J. Schetzina et al., J Vac. Sci. Technol., B10, 1418, (1992) 
https://doi.org/10.1116/1.586264
 
11. T. Takahashi, S. Watanabe, IEEE Trans Nucl Sci 48(4), 950, (2001).
https://doi.org/10.1109/23.958705
 
12. V. Komar, A. Gektin, D. Nalivaiko et al., NIM A 458 (1-2), 113, (2001). 
https://doi.org/10.1016/S0168-9002(00)00856-1
 
13. B. Hong, S. Zhang, L. Zheng et al., J. Cryst. Growth 546, 125776, (2020). 
https://doi.org/10.1016/j.jcrysgro.2020.125776
 
14. W. Wu, J. Zhang, L. Wang et al., Phys. Status Solidi C, 13, 408 (2016). 
https://doi.org/10.1002/pssc.201510226
 
15. U.N. Roy, A. Burger, R.B. James, J. Cryst. Growth, 379, 57, (2013). 
https://doi.org/10.1016/j.jcrysgro.2012.11.047
 
16. K. Schwenkenbecher, P. Rudolph, Cryst. Res. Technol. 20, 1609 (1985). 
https://doi.org/10.1002/crat.2170201212
 
17. L. Yin, W. Jie, T. Wang, J. Cryst. Growth, 461, 16, (2017) 
https://doi.org/10.1016/j.jcrysgro.2016.11.074
 
18. U.N. Roy, S. Weiler, J. Stein, J. Cryst. Growth, 312, 2840, (2010) 
https://doi.org/10.1016/j.jcrysgro.2010.05.046
 
19. Y. Liu, S. Dost, B. Lent et al., J. Cryst. Growth, 254, 285, (2003) 
https://doi.org/10.1016/S0022-0248(03)01140-0
 
20. S. Dost, Y. Liu, Comptes Rendus Mécanique, 335 (5-6), (2007), 
https://doi.org/10.1016/j.crme.2007.05.011
 
21. C. W. Lan и D. T. Yang, Modelling Simul. Mater. Sci. Eng., 3, (1), (1995),
https://doi.org/10.1088/0965-0393/3/1/007
 
22. S. Dost, R. A. Meric, B. Lent Trans. Can. Soc. Mech. Eng., 24, (1B), (2000), 
https://doi.org/10.1139/tcsme-2000-0006
 
23. B. Lent, S. Dost, R. F. Reddenet et al., J. Cryst. Growth, 237-239, (2002), 
https://doi.org/10.1016/S0022-0248(01)02208-4
 
24. X. Ye, B. Tabarrok, D. Walsh, J. Cryst. Growth, 169, (4), (1996), 
https://doi.org/10.1016/S0022-0248(96)00451-4
 
25. J. H. Peterson, M. Fiederle, J. J. Derby, J. Cryst. Growth, 454, (2016), 
https://doi.org/10.1016/j.jcrysgro.2016.08.055
 
26. M. D. Reed, Cs. Szeles, S. E. Cameron, J. Cryst. Growth, 289, (2), (2006), 
https://doi.org/10.1016/j.jcrysgro.2005.12.103
 
27. C. Szeles, S. E. Cameron, J.-O. Ndap, et al., «Advances in the crystal growth of semiinsulating CdZnTe for radiation detector applications», в 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310), San Diego, CA, USA: IEEE, 2002, сс. 2424-2428. 
https://doi.org/10.1109/NSSMIC.2001.1009309
 
28. J. J. Derby D. Gasperino, «Computational Models for Crystal Growth of Radiation Detector Materials: Growth of CZT by the EDG Method», MRS Proc., т. 1038, сс. 1038-O05-09, 2007, 
https://doi.org/10.1557/PROC-1038-O05-09
 
29. L. Lun, A. Yeckel, M. Reed, C. Szeles, et al., J. Cryst. Growth, 290, (1), (2006), 
https://doi.org/10.1016/j.jcrysgro.2006.01.006
 
30. D. Gasperino, M. Bliss, K. Jones, J. Cryst. Growth, 311, (2009), 
https://doi.org/10.1016/j.jcrysgro.2009.01.141
 
31. C. Szeles, S. E. Cameron, S. A. Soldner, et al., J. Electron. Mater., 33, (6), (2004), 
https://doi.org/10.1007/s11664-004-0076-z
 
32. D. Brellier J. Electron. Mater., 43, (8), (2014), 
https://doi.org/10.1007/s11664-014-3146-x
 
33. Y. Okano, S. Nishino, S. Ohkubo, J. Cryst. Growth, 237-239, (2002), 
https://doi.org/10.1016/S0022-0248(01)02339-9
 
34. Yu. D. Filatov, V. I. Sidorko, S. V. Kovalev, J. Superhard Mater., 43, (4), (2021), 
https://doi.org/10.3103/S1063457621040043
 
35. M. Inoue, I. Teramoto, и S. Takayanagi, J. Appl. Phys. 33, (8), (1962), 
https://doi.org/10.1063/1.1729023
 
36. E. Garnier, N. Adams, и P. Sagaut, «LES Governing Equations», (2009), 
https://doi.org/10.1007/978-90-481-2819-8_2
 
37. G. Katul, L. Mahrt, D. Poggi, et al., Boundary-Layer Meteorology, 113, (2004), 
https://doi.org/10.1023/B:BOUN.0000037333.48760.e5
 
38. S. Verdério Júnior, V. Scalon, et al., Ingeniare. Revista chilena de ingeniería, 26, 2018
https://doi.org/10.4067/S0718-33052018000400546
 
39. Y. P. Almeida, P. L. C. Lage, L. F. L. R. Silva, Appl. Therm. Eng.,81, (2015),
https://doi.org/10.1016/j.applthermaleng.2015.02.027
 
40. A. El Mokri, R. Triboulet, A. Lusson, et al., J. Cryst. Growth, 138, (1), (1994), 
https://doi.org/10.1016/0022-0248(94)90800-1
 
41. C.-H. Su, AIP Advances,5, ( 5), (2015), 
https://doi.org/10.1063/1.4921025
 
42. C. Martinez-Tomas, V. Muñoz, и R. Triboulet, J. Cryst. Growth, 197, (3), (1999), 
https://doi.org/10.1016/S0022-0248(98)00806-9
 
43. M. Divecha J. Cryst. Growth, (468) (2017).
https://doi.org/10.1016/j.jcrysgro.2016.09.068
 
44. J. Peterson, «Understanding growth rate limitations in production of single-crystal cadmium zinc telluride (CZT) by the traveling heater method (THM)», 2017. Thesis (Ph.D.)--University of Minnesota, 2017.; Publication Number: AAT 10261040; ISBN: 9780355061239; Source: Dissertation Abstracts International, Volume: 78-11(E), Section: B.; 133 p.
 
45. C. K. Ghaddar, C. K. Lee, S. Motakef, et al., J. Cryst. Growth, 205, (1), (1999), 
https://doi.org/10.1016/S0022-0248(99)00206-7
 
46. V. Kumar, S. Dost, F. Durst, Appl. Math. Model. 31, (3,) (2007), doi: 10.1016/j.apm.2005.11.022
https://doi.org/10.1016/j.apm.2005.11.022
 
47. S. C. Mishra, H. K. Roy, J. Comput. Phys. 223, (1), с(2007), 
https://doi.org/10.1016/j.jcp.2006.08.021
 
48. M. Tano-Retamales, P. Rubiolo, O. Doche, «Development of Data-Driven Turbulence Models in OpenFOAM: Application to Liquid Fuel Nuclear Reactors», в OpenFOAM®: Selected Papers of the 11th Workshop, J. M. Nóbrega и H. Jasak, Ред., Cham: Springer International Publishing, 2019, сс. 93-108. 
https://doi.org/10.1007/978-3-319-60846-4_7
 
49. V. da Silva, G. de Neves Gomes, A. de Lima e Silva et al., Heat Mass Transf. 55, 2289 (2019). 
https://doi.org/10.1007/s00231-019-02574-5
 
50. M. Abbassi, D. Lahaye, K. Vuik, Modelling Turbulent Combustion Coupled with Conjugate Heat Transfer in OpenFOAM. In: F. Vermolen, C. Vuik, (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, 139. Springer, Cham (2019). 
https://doi.org/10.1007/978-3-030-55874-1_113
 
51. E. O. Schulz-Dubois, J. Cryst. Growth 12, (2), (1972), 
https://doi.org/10.1016/0022-0248(72)90034-6
 
52. L. Yin, W. Jie, T. Wang, B. Zhou,et al., J. Wuhan Univ. Technol.-Mat. Sci. Edit., 32, (2), (2017), 
https://doi.org/10.1007/s11595-017-1602-1
 
53. W. L. Heitz и J. W. Westwater, J Heat Trans, 93, (2), (1971), 
https://doi.org/10.1115/1.3449783
 
54. X. Wang, W. Yuchi, J. Zhu,et al., J. Therm. Sci., 30, (5), (2021), 
https://doi.org/10.1007/s11630-021-1418-3
 
   

 

Current number: