1. U. Cevik, E. Bacaksiz, N. Damla et al., Radiat. Meas. 43, 8, 1437, (2008).
https://doi.org/10.1016/j.radmeas.2008.03.033 |
|
2. S. Del Sordo, L. Abbene, E. Caroli et al., Sensors 9, 3491 (2009).
https://doi.org/10.3390/s90503491 |
|
3. A. E. Bolotnikov, S. Babalola, G. S. Camarda et al., in IEEE Trans Nucl Sci, 58, (4), 1972 (2011).
https://doi.org/10.1109/TNS.2011.2160283 |
|
4. U. N. Roy, G. Camarda, Y. Cui et al., Appl. Phys. Lett. 114, 232107 (2019).
https://doi.org/10.1063/1.5109119 |
|
|
5. J.S. Yadav, S. Savitri, J.P. Malkar NIM A 552, (2005).
https://doi.org/10.1016/j.nima.2005.07.001 |
|
6, S. U. Egarievwe U. Roy; E. Agbalagba et al., IEEE Access, 8, 137530 (2020).
https://doi.org/10.1109/ACCESS.2020.3012040 |
|
7. Schillebeeckx, P., Borella, A., Bruggeman, et al., Cadmium Zinc Telluride Detectors for Safeguards Applications. In: K. Iniewski, (eds) Advanced Materials for Radiation Detection. Springer, Cham. (2022).
https://doi.org/10.1007/978-3-030-76461-6_15 |
|
8. K. Iniewski JINST, 9, C11001 (2014).
https://doi.org/10.1088/1748-0221/9/11/C11001 |
|
9. C. G. Wahl, W. Kaye, F. Zhang et al., 2017 IEEE NSS/MIC, Atlanta, GA, USA, 2017, p.1.
https://doi.org/10.1109/NSSMIC.2017.8532778 |
|
10. F. Doty, J. Butler, J. Schetzina et al., J Vac. Sci. Technol., B10, 1418, (1992)
https://doi.org/10.1116/1.586264 |
|
11. T. Takahashi, S. Watanabe, IEEE Trans Nucl Sci 48(4), 950, (2001).
https://doi.org/10.1109/23.958705 |
|
12. V. Komar, A. Gektin, D. Nalivaiko et al., NIM A 458 (1-2), 113, (2001).
https://doi.org/10.1016/S0168-9002(00)00856-1 |
|
13. B. Hong, S. Zhang, L. Zheng et al., J. Cryst. Growth 546, 125776, (2020).
https://doi.org/10.1016/j.jcrysgro.2020.125776 |
|
14. W. Wu, J. Zhang, L. Wang et al., Phys. Status Solidi C, 13, 408 (2016).
https://doi.org/10.1002/pssc.201510226 |
|
15. U.N. Roy, A. Burger, R.B. James, J. Cryst. Growth, 379, 57, (2013).
https://doi.org/10.1016/j.jcrysgro.2012.11.047 |
|
16. K. Schwenkenbecher, P. Rudolph, Cryst. Res. Technol. 20, 1609 (1985).
https://doi.org/10.1002/crat.2170201212 |
|
17. L. Yin, W. Jie, T. Wang, J. Cryst. Growth, 461, 16, (2017)
https://doi.org/10.1016/j.jcrysgro.2016.11.074 |
|
18. U.N. Roy, S. Weiler, J. Stein, J. Cryst. Growth, 312, 2840, (2010)
https://doi.org/10.1016/j.jcrysgro.2010.05.046 |
|
19. Y. Liu, S. Dost, B. Lent et al., J. Cryst. Growth, 254, 285, (2003)
https://doi.org/10.1016/S0022-0248(03)01140-0 |
|
20. S. Dost, Y. Liu, Comptes Rendus Mécanique, 335 (5-6), (2007),
https://doi.org/10.1016/j.crme.2007.05.011 |
|
21. C. W. Lan и D. T. Yang, Modelling Simul. Mater. Sci. Eng., 3, (1), (1995),
https://doi.org/10.1088/0965-0393/3/1/007 |
|
22. S. Dost, R. A. Meric, B. Lent Trans. Can. Soc. Mech. Eng., 24, (1B), (2000),
https://doi.org/10.1139/tcsme-2000-0006 |
|
23. B. Lent, S. Dost, R. F. Reddenet et al., J. Cryst. Growth, 237-239, (2002),
https://doi.org/10.1016/S0022-0248(01)02208-4 |
|
24. X. Ye, B. Tabarrok, D. Walsh, J. Cryst. Growth, 169, (4), (1996),
https://doi.org/10.1016/S0022-0248(96)00451-4 |
|
25. J. H. Peterson, M. Fiederle, J. J. Derby, J. Cryst. Growth, 454, (2016),
https://doi.org/10.1016/j.jcrysgro.2016.08.055 |
|
26. M. D. Reed, Cs. Szeles, S. E. Cameron, J. Cryst. Growth, 289, (2), (2006),
https://doi.org/10.1016/j.jcrysgro.2005.12.103 |
|
27. C. Szeles, S. E. Cameron, J.-O. Ndap, et al., «Advances in the crystal growth of semiinsulating CdZnTe for radiation detector applications», в 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310), San Diego, CA, USA: IEEE, 2002, сс. 2424-2428.
https://doi.org/10.1109/NSSMIC.2001.1009309 |
|
28. J. J. Derby D. Gasperino, «Computational Models for Crystal Growth of Radiation Detector Materials: Growth of CZT by the EDG Method», MRS Proc., т. 1038, сс. 1038-O05-09, 2007,
https://doi.org/10.1557/PROC-1038-O05-09 |
|
29. L. Lun, A. Yeckel, M. Reed, C. Szeles, et al., J. Cryst. Growth, 290, (1), (2006),
https://doi.org/10.1016/j.jcrysgro.2006.01.006 |
|
30. D. Gasperino, M. Bliss, K. Jones, J. Cryst. Growth, 311, (2009),
https://doi.org/10.1016/j.jcrysgro.2009.01.141 |
|
31. C. Szeles, S. E. Cameron, S. A. Soldner, et al., J. Electron. Mater., 33, (6), (2004),
https://doi.org/10.1007/s11664-004-0076-z |
|
32. D. Brellier J. Electron. Mater., 43, (8), (2014),
https://doi.org/10.1007/s11664-014-3146-x |
|
33. Y. Okano, S. Nishino, S. Ohkubo, J. Cryst. Growth, 237-239, (2002),
https://doi.org/10.1016/S0022-0248(01)02339-9 |
|
34. Yu. D. Filatov, V. I. Sidorko, S. V. Kovalev, J. Superhard Mater., 43, (4), (2021),
https://doi.org/10.3103/S1063457621040043 |
|
35. M. Inoue, I. Teramoto, и S. Takayanagi, J. Appl. Phys. 33, (8), (1962),
https://doi.org/10.1063/1.1729023 |
|
36. E. Garnier, N. Adams, и P. Sagaut, «LES Governing Equations», (2009),
https://doi.org/10.1007/978-90-481-2819-8_2 |
|
37. G. Katul, L. Mahrt, D. Poggi, et al., Boundary-Layer Meteorology, 113, (2004),
https://doi.org/10.1023/B:BOUN.0000037333.48760.e5 |
|
38. S. Verdério Júnior, V. Scalon, et al., Ingeniare. Revista chilena de ingeniería, 26, 2018
https://doi.org/10.4067/S0718-33052018000400546 |
|
39. Y. P. Almeida, P. L. C. Lage, L. F. L. R. Silva, Appl. Therm. Eng.,81, (2015),
https://doi.org/10.1016/j.applthermaleng.2015.02.027 |
|
40. A. El Mokri, R. Triboulet, A. Lusson, et al., J. Cryst. Growth, 138, (1), (1994),
https://doi.org/10.1016/0022-0248(94)90800-1 |
|
41. C.-H. Su, AIP Advances,5, ( 5), (2015),
https://doi.org/10.1063/1.4921025 |
|
42. C. Martinez-Tomas, V. Muñoz, и R. Triboulet, J. Cryst. Growth, 197, (3), (1999),
https://doi.org/10.1016/S0022-0248(98)00806-9 |
|
43. M. Divecha J. Cryst. Growth, (468) (2017).
https://doi.org/10.1016/j.jcrysgro.2016.09.068 |
|
44. J. Peterson, «Understanding growth rate limitations in production of single-crystal cadmium zinc telluride (CZT) by the traveling heater method (THM)», 2017. Thesis (Ph.D.)--University of Minnesota, 2017.; Publication Number: AAT 10261040; ISBN: 9780355061239; Source: Dissertation Abstracts International, Volume: 78-11(E), Section: B.; 133 p. |
|
45. C. K. Ghaddar, C. K. Lee, S. Motakef, et al., J. Cryst. Growth, 205, (1), (1999),
https://doi.org/10.1016/S0022-0248(99)00206-7 |
|
46. V. Kumar, S. Dost, F. Durst, Appl. Math. Model. 31, (3,) (2007), doi: 10.1016/j.apm.2005.11.022
https://doi.org/10.1016/j.apm.2005.11.022 |
|
47. S. C. Mishra, H. K. Roy, J. Comput. Phys. 223, (1), с(2007),
https://doi.org/10.1016/j.jcp.2006.08.021 |
|
48. M. Tano-Retamales, P. Rubiolo, O. Doche, «Development of Data-Driven Turbulence Models in OpenFOAM: Application to Liquid Fuel Nuclear Reactors», в OpenFOAM®: Selected Papers of the 11th Workshop, J. M. Nóbrega и H. Jasak, Ред., Cham: Springer International Publishing, 2019, сс. 93-108.
https://doi.org/10.1007/978-3-319-60846-4_7 |
|
49. V. da Silva, G. de Neves Gomes, A. de Lima e Silva et al., Heat Mass Transf. 55, 2289 (2019).
https://doi.org/10.1007/s00231-019-02574-5 |
|
50. M. Abbassi, D. Lahaye, K. Vuik, Modelling Turbulent Combustion Coupled with Conjugate Heat Transfer in OpenFOAM. In: F. Vermolen, C. Vuik, (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, 139. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-55874-1_113 |
|
51. E. O. Schulz-Dubois, J. Cryst. Growth 12, (2), (1972),
https://doi.org/10.1016/0022-0248(72)90034-6 |
|
52. L. Yin, W. Jie, T. Wang, B. Zhou,et al., J. Wuhan Univ. Technol.-Mat. Sci. Edit., 32, (2), (2017),
https://doi.org/10.1007/s11595-017-1602-1 |
|
53. W. L. Heitz и J. W. Westwater, J Heat Trans, 93, (2), (1971),
https://doi.org/10.1115/1.3449783 |
|
54. X. Wang, W. Yuchi, J. Zhu,et al., J. Therm. Sci., 30, (5), (2021),
https://doi.org/10.1007/s11630-021-1418-3 |
|
|