Funct. Mater. 2024; 31 (4): 619-629.
New menthol-based eutectic solvents and their extraction properties towards metal ions
1 Institute of Functional Materials Chemistry, State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine, 60 Nauky Ave, 61072 Kharkiv, Ukraine
2 Institute for Scintillation Materials of National Academy of Sciences of Ukraine, 60 Nauky Ave, 61072 Kharkiv, Ukraine
3 School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
Deep eutectic solvents are increasingly being used as extraction media as their properties are easily tunable and they can fulfill the green chemistry criteria. In this study, a range of hydrophobic (deep) eutectic solvents was developed as potential extractants of elemental impurities. The experimental results provided insights into the solid-liquid equilibrium of the binary mixtures containing menthol with various organic compounds. The NMR and FTIR spectroscopy were applied to characterize the eutectic compositions. The extraction property towards elemental species was evaluated in the terms of distribution coefficient for 24 elements. It has been shown that the inclusion of a chelating reagent as сompnent of the eutectic solvent can significantly increase the group extraction efficiency of metal ions.
1. S. Armenta, S. Garrigues, F. A. Esteve-Turrillas et al. TrAC - Trends Anal. Chem. 116, 248 (2019). https://doi.org/10.1016/j.trac.2019.03.016 |
||||
2. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. ICH Harmonised Guideline: Guideline for Elemental Impurities Q3D(R2). Europeans Medicines Agency 1 (2022). | ||||
3. J. Bintanel-Cenis, M. A. Fernández, B. Gómara et al. Talanta 270, 125599 (2024). https://doi.org/10.1016/j.talanta.2023.125599 |
||||
4. T. Khezeli, M. Ghaedi, S. Bahrani et al. in New Generation Green Solvents for Separation and Preconcentration of Organic and Inorganic Species 381 (2020). https://doi.org/10.1016/B978-0-12-818569-8.00009-7 |
||||
5. M. Cherniakova, V. Varchenko, K. Belikov. Chem. Rec. 24, e202300267 (2023). https://doi.org/10.1002/tcr.202300267 |
||||
6. S. Sadeghi, A. Davami. J. Mol. Liq. 291, 111242 (2019). https://doi.org/10.1016/j.molliq.2019.111242 |
||||
7. S. M. Sorouraddin, M. A. Farajzadeh, T. Okhravi. J. Food Compos. Anal. 93, 103590 (2020). https://doi.org/10.1016/j.jfca.2020.103590 |
||||
8. M. Karimi, S. Dadfarnia, A. M. H. Shabani et al. Talanta 144, 648 (2015). https://doi.org/10.1016/j.talanta.2015.07.021 |
||||
9. R. Akramipour, M. R. Golpayegani, S. Gheini et al. Talanta 186, 17 (2018). https://doi.org/10.1016/j.talanta.2018.04.042 |
||||
10. R. A. Zounr, M. Tuzen, N. Deligonul et al. Food Chem. 253, 277 (2018). https://doi.org/10.1016/j.foodchem.2018.01.167 |
||||
11. M. H. Habibollahi, K.A. Karimyan, N. Mirzaei et al. J. Sci. Food Agric. 99, 656 (2019). https://doi.org/10.1002/jsfa.9230 |
||||
12. J. M. Matong, L. Nyaba, P. N. Nomngongo. Ecotoxicol. Environ. Saf. 135, 152 (2017). https://doi.org/10.1016/j.ecoenv.2016.09.033 |
||||
13. R. A. Zounr, M. Tuzen, M. Y. Khuhawar. J. Mol. Liq. 242, 441 (2017). https://doi.org/10.1016/j.molliq.2017.07.053 |
||||
14. E. Yilmaz, M. Soylak. Talanta 136, 170 (2015). https://doi.org/10.1016/j.talanta.2014.12.034 |
||||
15. M. Soylak, M. Koksal. Microchem. J. 147, 832 (2019). https://doi.org/10.1016/j.microc.2019.04.006 |
||||
16. H. U. Haq, M. Balal, R. Castro-Muñoz et al. J. Mol. Liq. 333, 1 (2021). | ||||
17. K. Ghanemi, M. A. Navidi, M. Fallah-Mehrjardi et al. Anal. Methods 6, 1774 (2014). https://doi.org/10.1039/C3AY41843J |
||||
18. P. Makoś, E. Słupek, J. Gębicki. Microchem. J. 152, 104384 (2020). https://doi.org/10.1016/j.microc.2019.104384 |
||||
19. E. E. Tereshatov, M. Y. Boltoeva, C. M. Folden. Green Chem. 18, 4616 (2016). https://doi.org/10.1039/C5GC03080C |
||||
20. N. Schaeffer, M. A. R. Martins, C. M. S. S. Neves et al. Chem. Commun. 54, 8104 (2018). https://doi.org/10.1039/C8CC04152K |
||||
21. M. Y. Cherniakova, O. V. Vashchenko, J. M. Stolper et al. New J. Chem. 48, 14527 (2024). https://doi.org/10.1039/D4NJ02497D |
||||
22. F. C. Pinheiro, M. Á. Aguirre, J. A. Nóbrega et al. Anal. Chim. Acta 1185, 339052 (2021). https://doi.org/10.1016/j.aca.2021.339052 |
||||
23. N. Altunay, M. Tuzen. Food Chem. 364, 130371 (2021). https://doi.org/10.1016/j.foodchem.2021.130371 |
||||
24. M. J. Blandamer, J. C. R. Reis. A Notebook for Topics in Thermodynamics of Solutions and Liquid Mixtures (2024). | ||||
25. J. M. Prausnitz, R. N. Lichtenthaler, E. G. de Azevedo. Molecular Thermodynamics of Fluidphase Equilibria (1999). | ||||
26. P. Stott. J. Control. Release 50, 297 (1998). https://doi.org/10.1016/S0168-3659(97)00153-3 |
||||
27. M. A. R. S. P. Martins, Pinho, J. A. P. Coutinho. J. Solution Chem. 48, 962 (2019). https://doi.org/10.1007/s10953-018-0793-1 |
||||
28. W. Pitacco, C. Samorì, L. Pezzolesi et al. Food Chem. 379, 132156 (2022). https://doi.org/10.1016/j.foodchem.2022.132156 |
||||
29. M. A. R. Martins, E. A. Crespo, P. V. A. Pontes et al. ACS Sustain. Chem. Eng. 6, 8836 (2018). https://doi.org/10.1021/acssuschemeng.8b01203 |
||||
30. F. Mahlamvana, R. J. Kriek. Appl. Catal. B Environ. 148-149, 387 (2014). https://doi.org/10.1016/j.apcatb.2013.11.011 |