Funct. Mater. 2024; 31 (4): 619-629.

doi:https://doi.org/10.15407/fm31.04.619

New menthol-based eutectic solvents and their extraction properties towards metal ions

M. Yu. Cherniakova1, O. V. Vashchenko2, I. O. Zinchenko1, V. I. Musatov1, K. N. Belikov1,3

1 Institute of Functional Materials Chemistry, State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine, 60 Nauky Ave, 61072 Kharkiv, Ukraine
2 Institute for Scintillation Materials of National Academy of Sciences of Ukraine, 60 Nauky Ave, 61072 Kharkiv, Ukraine
3 School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine

Abstract: 

Deep eutectic solvents are increasingly being used as extraction media as their properties are easily tunable and they can fulfill the green chemistry criteria. In this study, a range of hydrophobic (deep) eutectic solvents was developed as potential extractants of elemental impurities. The experimental results provided insights into the solid-liquid equilibrium of the binary mixtures containing menthol with various organic compounds. The NMR and FTIR spectroscopy were applied to characterize the eutectic compositions. The extraction property towards elemental species was evaluated in the terms of distribution coefficient for 24 elements. It has been shown that the inclusion of a chelating reagent as сompnent of the eutectic solvent can significantly increase the group extraction efficiency of metal ions.

Keywords: 
deep eutectic solvent, liquid extraction, metal ions, green chemistry, supramolecular chemistry, menthol, atomic emission spectrometry
References: 
1. S. Armenta, S. Garrigues, F. A. Esteve-Turrillas et al. TrAC - Trends Anal. Chem. 116, 248 (2019).
https://doi.org/10.1016/j.trac.2019.03.016
 
2. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. ICH Harmonised Guideline: Guideline for Elemental Impurities Q3D(R2). Europeans Medicines Agency 1 (2022).
 
3. J. Bintanel-Cenis, M. A. Fernández, B. Gómara et al. Talanta 270, 125599 (2024).
https://doi.org/10.1016/j.talanta.2023.125599
 
4. T. Khezeli, M. Ghaedi, S. Bahrani et al. in New Generation Green Solvents for Separation and Preconcentration of Organic and Inorganic Species 381 (2020).
https://doi.org/10.1016/B978-0-12-818569-8.00009-7
 
5. M. Cherniakova, V. Varchenko, K. Belikov. Chem. Rec. 24, e202300267 (2023).
https://doi.org/10.1002/tcr.202300267
 
6. S. Sadeghi, A. Davami. J. Mol. Liq. 291, 111242 (2019).
https://doi.org/10.1016/j.molliq.2019.111242
 
7. S. M. Sorouraddin, M. A. Farajzadeh, T. Okhravi. J. Food Compos. Anal. 93, 103590 (2020).
https://doi.org/10.1016/j.jfca.2020.103590
 
8. M. Karimi, S. Dadfarnia, A. M. H. Shabani et al. Talanta 144, 648 (2015).
https://doi.org/10.1016/j.talanta.2015.07.021
 
9. R. Akramipour, M. R. Golpayegani, S. Gheini et al. Talanta 186, 17 (2018).
https://doi.org/10.1016/j.talanta.2018.04.042
 
10. R. A. Zounr, M. Tuzen, N. Deligonul et al. Food Chem. 253, 277 (2018).
https://doi.org/10.1016/j.foodchem.2018.01.167
 
11. M. H. Habibollahi, K.A. Karimyan, N. Mirzaei et al. J. Sci. Food Agric. 99, 656 (2019).
https://doi.org/10.1002/jsfa.9230
 
12. J. M. Matong, L. Nyaba, P. N. Nomngongo. Ecotoxicol. Environ. Saf. 135, 152 (2017).
https://doi.org/10.1016/j.ecoenv.2016.09.033
 
13. R. A. Zounr, M. Tuzen, M. Y. Khuhawar. J. Mol. Liq. 242, 441 (2017).
https://doi.org/10.1016/j.molliq.2017.07.053
 
14. E. Yilmaz, M. Soylak. Talanta 136, 170 (2015).
https://doi.org/10.1016/j.talanta.2014.12.034
 
15. M. Soylak, M. Koksal. Microchem. J. 147, 832 (2019).
https://doi.org/10.1016/j.microc.2019.04.006
 
16. H. U. Haq, M. Balal, R. Castro-Muñoz et al. J. Mol. Liq. 333, 1 (2021).
 
17. K. Ghanemi, M. A. Navidi, M. Fallah-Mehrjardi et al. Anal. Methods 6, 1774 (2014).
https://doi.org/10.1039/C3AY41843J
 
18. P. Makoś, E. Słupek, J. Gębicki. Microchem. J. 152, 104384 (2020).
https://doi.org/10.1016/j.microc.2019.104384
 
19. E. E. Tereshatov, M. Y. Boltoeva, C. M. Folden. Green Chem. 18, 4616 (2016).
https://doi.org/10.1039/C5GC03080C
 
20. N. Schaeffer, M. A. R. Martins, C. M. S. S. Neves et al. Chem. Commun. 54, 8104 (2018).
https://doi.org/10.1039/C8CC04152K
 
21. M. Y. Cherniakova, O. V. Vashchenko, J. M. Stolper et al. New J. Chem. 48, 14527 (2024).
https://doi.org/10.1039/D4NJ02497D
 
22. F. C. Pinheiro, M. Á. Aguirre, J. A. Nóbrega et al. Anal. Chim. Acta 1185, 339052 (2021).
https://doi.org/10.1016/j.aca.2021.339052
 
23. N. Altunay, M. Tuzen. Food Chem. 364, 130371 (2021).
https://doi.org/10.1016/j.foodchem.2021.130371
 
24. M. J. Blandamer, J. C. R. Reis. A Notebook for Topics in Thermodynamics of Solutions and Liquid Mixtures (2024).
 
25. J. M. Prausnitz, R. N. Lichtenthaler, E. G. de Azevedo. Molecular Thermodynamics of Fluidphase Equilibria (1999).
 
26. P. Stott. J. Control. Release 50, 297 (1998).
https://doi.org/10.1016/S0168-3659(97)00153-3
 
27. M. A. R. S. P. Martins, Pinho, J. A. P. Coutinho. J. Solution Chem. 48, 962 (2019).
https://doi.org/10.1007/s10953-018-0793-1
 
28. W. Pitacco, C. Samorì, L. Pezzolesi et al. Food Chem. 379, 132156 (2022).
https://doi.org/10.1016/j.foodchem.2022.132156
 
29. M. A. R. Martins, E. A. Crespo, P. V. A. Pontes et al. ACS Sustain. Chem. Eng. 6, 8836 (2018).
https://doi.org/10.1021/acssuschemeng.8b01203
 
30. F. Mahlamvana, R. J. Kriek. Appl. Catal. B Environ. 148-149, 387 (2014).
https://doi.org/10.1016/j.apcatb.2013.11.011

Current number: