Funct. Mater. 2024; 31 (4): 630-637.

doi:https://doi.org/10.15407/fm31.04.630

Prospects of using MOF/TiO2 nanocomposites for photocatalytic degradation of pesticides

Zhou Zhentao1,2, A. Sukhoivanenko1, T. Dontsova1

1National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv 03056, Ukraine
2State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant protection, Chinese Academy of Agriculture Science, Beijing 100193, China

Abstract: 

Cleaning water bodies from fourth-generation pesticides is an urgent problem today. In this study, a series of nanocomposites based on MOF (NH2-MIL-125) and commercial titanium (IV) oxide P25 were synthesized and characterized, and their photocatalytic activity towards imidacloprid was determined. MOF and MOF/TiO2 composites were synthesized by a simple solvothermal method. The synthesized MOF and MOF/TiO2 composite were characterized by XRD, electron microscopy, UV-visible, infrared and FTIR spectroscopy, and TGA analysis. The studies showed that TiO2 and MOF have typical properties, and the properties of the composite were similar to those of MOF. The found band gap values of MOF and MOF/TiO2 composite (2.68 eV and 2.58 eV) indicate their potential use visible light photocatalytic processes. The photocatalytic activity study indicates a two-step degradation of imidacloprid, which is quite efficient for the MOF/TiO2 composite with the highest titanium (IV) oxide content, reaching almost 100% after 2 h our of photocatalytic reaction.

Keywords: 
MOF/TiO<sub>2</sub> nanocomposites, Metal-organic frameworks, Titanium (IV) oxide, Photocatalysis, Pesticides, Imidacloprid
References: 
1. Mu H, Yang X, Wang K, et al., Chemosphere, 326, 138428 (2023). 
https://doi.org/10.1016/j.chemosphere.2023.138428
 
2. Zhang X, Huang Y, Chen WJ, et al., Environ. Res., 218, 114953 (2023). 
https://doi.org/10.1016/j.envres.2022.114953
 
3. Mojiri A, Zhou JL, Robinson B, et al., Chemosphere, 253, 126646 (2020). 
https://doi.org/10.1016/j.chemosphere.2020.126646
 
4. Asghar A, Mabarak S, Ashraf B, et al., Inorg. Chem. Commun., 159, 111790 (2024).
https://doi.org/10.1016/j.inoche.2023.111790
 
5. Roshani M, Nematollahi D, Ansari A, et al., Chemosphere, 346, 140597 (2024). 
https://doi.org/10.1016/j.chemosphere.2023.140597
 
6. Pirsaheb M, Moradi N., RSC Adv., 10, 7396-7423 (2020). 
https://doi.org/10.1039/C9RA11025A
 
7. GOH PS, Ahmad NA, Wong TW, et al., Chemosphere, 307(3), 136018 (2022). 
https://doi.org/10.1016/j.chemosphere.2022.136018
 
8. Kuzminchuk A, Burmak A, Litynska M, et al., Appl. Nanosci., 13, 5335-5343 (2023). 
https://doi.org/10.1007/s13204-023-02792-8
 
9. Dontsova T, Kyrii S, Yanushevska O, et al., Chem. Pap., 76, 7667-7683 (2022). 
https://doi.org/10.1007/s11696-022-02433-4
 
10. Kutuzova A, Dontsova T, Kwapinski W, et al., Mol. Cryst. Liq. Cryst ., 751, 28-40 (2022). 
https://doi.org/10.1080/15421406.2022.2073526
 
11. Ribeiro AR, Nunes OC, Pereira MFR, et al., Environ. Int., 75, 33-51 (2015). 
https://doi.org/10.1016/j.envint.2014.10.027
 
12. Bartolomeu M, Neves MGPMS, Faustino MAF, et al., Photochem. Photobiol. Sci., 17, 1573-1598 (2020). 
https://doi.org/10.1039/c8pp00249e
 
13. Varma KS, Tayade RJ, Shah KJ, et al., Water-Energy Nexus, 3, 46-61 (2020). 
https://doi.org/10.1016/j.wen.2020.03.008
 
14. Wei Z, Liu J, Shangguan W., Chinese J. Catal., 41(10), 1440-1450 (2020). 
https://doi.org/10.1016/S1872-2067(19)63448-0
 
15. Dontsova TA, Kutuzova AS, Bila KO, et al., J. Nanomater., 2020, 8349480 (2020). 
https://doi.org/10.1155/2020/8349480
 
16. Kutuzova A, Dontsova T, Kwapinski W., J. Inorg. Organomet. Polym. Mater ., 30, 3060-3072 (2020). 
https://doi.org/10.1007/s10904-020-01467-z
 
17. Kutuzova A, Dontsova T., Proccedings of the 2018 IEEE 8th International Conference Nanomaterials: Application & Properties, 2018 Sep 9-14, Zatoka, Ukraine, 1-5 (2019). 
https://doi.org/10.1109/NAP.2018.8914747
 
18. Kutuzova A, Dontsova T., Proccedings of the 2017 IEEE 7th International Conference Nanomaterials: Application & Properties, 2017 Sep 10-15, Odessa, Ukraine, 01NNPT02-1-01NNPT02-5 (2017). 
https://doi.org/10.1109/NAP.2017.8190182
 
19. Fagan R, McCormack DE, Dionysiou DD, et al., Mater. Sci. Semicond. Process., 42(1), 2-14 (2016). 
https://doi.org/10.1016/j.mssp.2015.07.052
 
20. Kyrii S, Dontsova T, Kosogina I, et al., Eastern-European Journal of Enterprise Technologies, 4(6(112)) 67-74 (2021). 
https://doi.org/10.15587/1729-4061.2021.238347
 
21. Abdurahman MH, Abdullah AZ, Shoparwe NF., Chem. Eng. J., 413, 127412 (2021). 
https://doi.org/10.1016/j.cej.2020.127412
 
22. Majumdar A, Pal A., Clean Technol. Environ. Policy, 22, 11-42 (2020). 
https://doi.org/10.1007/s10098-019-01766-1
 
23. Abbasnia A, Zarei A, Yeganeh M, et al., Inorg. Chem. Commun., 145, 109959 (2022). 
https://doi.org/10.1016/j.inoche.2022.109959
 
24. Batten SR, Neville SM, Turner DR., Angew. Chem. Int. Ed., 48(27), 4890-4891 (2009). 
https://doi.org/10.1002/anie.200902588
 
25. Jiao L, Seow JYR, Skinner WS, et al., Mater. Today, 27, 43-68 (2019). 
https://doi.org/10.1016/j.mattod.2018.10.038
 
26. Falcaro P, Ricco R, Yazdi A, et al., Coord. Chem. Rev., 307(2), 237-254 (2016). 
https://doi.org/10.1016/j.ccr.2015.08.002
 
27. Karthik P, Balaraman E, Neppolian B., Catal. Sci. Technol., 8, 3286-3294 (2018). 
https://doi.org/10.1039/C8CY00604K
 
28. Horiuchi Y, Toyao T, Saito M, et al., J. Phys. Chem. C., 116(39), 20848-20853 (2012). 
https://doi.org/10.1021/jp3046005
 
29. Slater AG, Cooper AI., Science, 348(6238) (2015). DOI: 10.1126/science.aaa8075.
https://doi.org/10.1126/science.aaa8075
 
30. Forster PM, Thomas PM, Cheetham AK., Chem. Mater., 14(1), 17-20 (2002). D
https://doi.org/10.1021/cm010820q
 
31. George P, Dhabarde NR, Chowdhury P., Mater. Lett., 186, 151-154 (2017).
https://doi.org/10.1016/j.matlet.2016.09.099
 
32. Devic T, Serre C., Chem. Soc. Rev., 43, 6097-6115 (2014). DOI: 10.1039/C4CS00081A.
https://doi.org/10.1039/C4CS00081A
 
33. Dong J, Cui P, Shi PF, et al., J. Am. Chem. Soc ., 137(51), 15988-15991 (2015). 
https://doi.org/10.1021/jacs.5b10000
 
34. Low JJ, Benin AI, Jakubczak P, et al., J. Am. Chem. Soc., 131(43), 15834-15842 (2009). 
https://doi.org/10.1021/ja9061344
 
35. Wang H, Yuan X, Wu Y, et al., J. Hazard. Mater., 286, 187-194 (2015). 
https://doi.org/10.1016/j.jhazmat.2014.11.039
 
36. González-Burciaga LA, Núñez-Núñez CM, Morones-Esquivel MM, et al., Catalysts, 10(1), 118 (2020). 
https://doi.org/10.3390/catal10010118
 
37. Yoon JW, Kim DH, Kim JH, et al., Appl. Catal. B: Environ., 244, 511-518 (2019). 
https://doi.org/10.1016/j.apcatb.2018.11.057
 
38. Dontsova T, Ivanenko I, Astrelin I., Springer Proceedings in Physics: Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies, 167, 275-293 (2015). 
https://doi.org/10.1007/978-3-319-18543-9_19
 
39. Fidalgo A, Letichevsky S, Santos BF., J. Photochem. Photobiol. A, 405, 112870 (2021). 
https://doi.org/10.1016/j.jphotochem.2020.112870
 
40. Al-Amin M, Dey S, Rashid T, et al., International Journal of Latest Research in Engineering and Technology, 2, 14-21 (2016).
 
41. Castellanos NJ, Rojas ZM, Camargo HA, et al., Transit. Met. Chem ., 44, 77-87 (2019). 
https://doi.org/10.1007/s11243-018-0271-z

Current number: