Functional Materials, 31, No.4 (2024), p. 646-651.

doi:https://doi.org/10.15407/fm31.04.646

Development of reflective filaments based on polycarbonate with the addition of PTFE and TiO2 for 3D printing of finely segmented plastic scintillators

T. Sibilieva, A. Boyarintsev, A. Krech, M. Sibilyev, S. Minenko, N. Karavaeva, L. Zosimova and 3DET collaboration

Institute for Scintillation Materials of National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072, Kharkiv, Ukraine

Abstract: 

Reflective filaments were developed based on polycarbonate with the addition of 10-20 wt.% finely dispersed polytetrafluoroethylene (PTFE) powder and 5-15 wt.% titanium dioxide (TiO2) pigment. The manufactured materials can be used to obtain reflectors by 3D printing for use in scintillation technology, in particular as part of finely segmented plastic scintillators. The produced reflective layers have a reflection coefficient of up to 90% and a transmission coefficient of about 0.2% at the wavelength of the maximum emission of polystyrene-based plastic scintillator. Technical approaches to the production of scintillation elements with a reflector using additive technologies are also considered.

Keywords: 
reflector, scintillation element, 3D printing, plastic scintillator, organic scintillator, composite material
References: 
1. C.A. Harper and E.M. Petrie, John Wiley & Sons, New York U.S.A. (2003). 
https://doi.org/10.1002/0471459216
 
2. R. Appel, G.S. Atoyan, B. Bassallecket et al., Nucl. Instrum. Methods Phys. Res. A, 479, 349 (2002). 
https://doi.org/10.1016/S0168-9002(01)00906-8
 
3. J. Thevenin, L. Allemand, E. Locci et al., Nucl. Instrum. Meth., 169, 53 (1980). 
https://doi.org/10.1016/0029-554X(80)90101-9
 
4. A. Pla-Dalmau, A. D. Bross, and K. L. Mellott, Nucl. Instrum. Methods Phys. Res. A, 466, 482 (2001). 
https://doi.org/10.1016/S0168-9002(01)00177-2
 
5. S. Berns, E. Boillat, A. Boyarintsev et al., JINST, 17, P10045 (2022). 
https://doi.org/10.1088/1748-0221/17/10/P10045
 
6. T. Weber, A. Boyarintsev, U. Kose et al.,
https://doi.org/10.48550/arXiv.2312.04672
 

7. MINERvA collaboration, Nucl. Instrum. Meth. A, 743, 130 (2014)

https://doi.org/10.1016/j.nima.2013.12.053

 
8. MINOS collaboration, Nucl. Instrum. Meth. A, 596, 190 (2008). 
https://doi.org/10.1016/j.nima.2008.08.003
 
9. NOvA collaboration, Phys. Rev. Lett., 123, 151803 (2019). 
https://doi.org/10.1103/PhysRevLett.123.151803
 
10. T2K ND280 FGD collaboration, Nucl. Instrum. Meth. A, 696, 1 (2012). 
https://doi.org/10.1016/j.nima.2012.08.020
 
11. T2K collaboration, Nucl. Instrum. Meth. A, 659, 106 (2011). 
https://doi.org/10.1016/j.nima.2011.06.067
 
12. Extruder Noztek Pro HT, https://noztek.com/product/noztek-pro/
 
13. Polycarbonate (PC) Resins CALIBRE™ by Trinseo, https://www.trinseo.com/Solutions/Polycarbonate/CALIBRE-Polycarbonate-Re...
 
14. Titanium dioxide R-706 by Ti-Pure, https://www.tipure.com/en/products/coatings/r-706
 
15. PTFE powder by Ireneusz Katarzyński Selkat, https://selkat.pl/
 
16. 3D printer Creatbot F430, https://www.creatbot.com/en/creatbot-f430.html
 
17. PC-PTFE filament by Nanovia, https://nanovia.tech/en/ref/nanovia-pc-ptfe/
 
18. Yiyi Tao, Zepeng Mao, Zhangbin Yang, Jun Zhang, Energy and Buildings, 225, 110361 (2020). 
https://doi.org/10.1016/j.enbuild.2020.110361
 
19. S. Berns, A. Boyarintsev, S. Hugon et al., JINST, 15, P10019 (2020). 
https://doi.org/10.1088/1748-0221/15/10/P10019