Functional Materials, 31, No.4 (2024), p. 646-651.
Development of reflective filaments based on polycarbonate with the addition of PTFE and TiO2 for 3D printing of finely segmented plastic scintillators
Institute for Scintillation Materials of National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072, Kharkiv, Ukraine
Reflective filaments were developed based on polycarbonate with the addition of 10-20 wt.% finely dispersed polytetrafluoroethylene (PTFE) powder and 5-15 wt.% titanium dioxide (TiO2) pigment. The manufactured materials can be used to obtain reflectors by 3D printing for use in scintillation technology, in particular as part of finely segmented plastic scintillators. The produced reflective layers have a reflection coefficient of up to 90% and a transmission coefficient of about 0.2% at the wavelength of the maximum emission of polystyrene-based plastic scintillator. Technical approaches to the production of scintillation elements with a reflector using additive technologies are also considered.
1. C.A. Harper and E.M. Petrie, John Wiley & Sons, New York U.S.A. (2003). https://doi.org/10.1002/0471459216 |
||||
2. R. Appel, G.S. Atoyan, B. Bassallecket et al., Nucl. Instrum. Methods Phys. Res. A, 479, 349 (2002). https://doi.org/10.1016/S0168-9002(01)00906-8 |
||||
3. J. Thevenin, L. Allemand, E. Locci et al., Nucl. Instrum. Meth., 169, 53 (1980). https://doi.org/10.1016/0029-554X(80)90101-9 |
||||
4. A. Pla-Dalmau, A. D. Bross, and K. L. Mellott, Nucl. Instrum. Methods Phys. Res. A, 466, 482 (2001). https://doi.org/10.1016/S0168-9002(01)00177-2 |
||||
5. S. Berns, E. Boillat, A. Boyarintsev et al., JINST, 17, P10045 (2022). https://doi.org/10.1088/1748-0221/17/10/P10045 |
||||
6. T. Weber, A. Boyarintsev, U. Kose et al., https://doi.org/10.48550/arXiv.2312.04672 |
||||
7. MINERvA collaboration, Nucl. Instrum. Meth. A, 743, 130 (2014) |
||||
8. MINOS collaboration, Nucl. Instrum. Meth. A, 596, 190 (2008). https://doi.org/10.1016/j.nima.2008.08.003 |
||||
9. NOvA collaboration, Phys. Rev. Lett., 123, 151803 (2019). https://doi.org/10.1103/PhysRevLett.123.151803 |
||||
10. T2K ND280 FGD collaboration, Nucl. Instrum. Meth. A, 696, 1 (2012). https://doi.org/10.1016/j.nima.2012.08.020 |
||||
11. T2K collaboration, Nucl. Instrum. Meth. A, 659, 106 (2011). https://doi.org/10.1016/j.nima.2011.06.067 |
||||
12. Extruder Noztek Pro HT, https://noztek.com/product/noztek-pro/ | ||||
13. Polycarbonate (PC) Resins CALIBRE™ by Trinseo, https://www.trinseo.com/Solutions/Polycarbonate/CALIBRE-Polycarbonate-Re... | ||||
14. Titanium dioxide R-706 by Ti-Pure, https://www.tipure.com/en/products/coatings/r-706 | ||||
15. PTFE powder by Ireneusz Katarzyński Selkat, https://selkat.pl/ | ||||
16. 3D printer Creatbot F430, https://www.creatbot.com/en/creatbot-f430.html | ||||
17. PC-PTFE filament by Nanovia, https://nanovia.tech/en/ref/nanovia-pc-ptfe/ | ||||
18. Yiyi Tao, Zepeng Mao, Zhangbin Yang, Jun Zhang, Energy and Buildings, 225, 110361 (2020). https://doi.org/10.1016/j.enbuild.2020.110361 |
||||
19. S. Berns, A. Boyarintsev, S. Hugon et al., JINST, 15, P10019 (2020). https://doi.org/10.1088/1748-0221/15/10/P10019 |