Funct. Mater. 2025; 32 (1): 77-86.
Microstructure, dynamics, and temperature behavior of L-menthol, salicylaldoxime, and their binary mixture: a molecular dynamics simulation study
1 Institute of Functional Materials Chemistry, State Scientific Institution ``Institute for Single Crystals’’, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv 61072, Ukraine
2 Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022, Ukraine.
3 School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022, Ukraine.
Deep eutectic solvents are mixtures of various substances classified as liquid supramolecular systems, which have a wide range of scientific, practical, and technological applications. This study investigated the molecular aspects involved in creating a deep eutectic binary mixture of L-menthol and salicylaldoxime using classical molecular dynamics simulations. We focused on the microstructure and dynamics of intermolecular interactions for both the individual components and their binary mixture at temperatures of 298, 333, and 353 K. Our findings revealed that, at a macroscopic scale, there is a nearly uniform distribution of components in the binary mixture of L-menthol and salicylaldoxime, with no phase separation or domain formation observed within the examined temperature range. We noted a significant increase in self-diffusion coefficients in the formation of the binary mixture, with these coefficients further increasing at higher temperatures. Through hydrogen bonding analysis and radial distribution functions, we demonstrated that the formation of the binary mixture resulted in changes to the solution’s microstructure, including a considerable reduction in the number of intermolecular hydrogen bonds. Consequently, the transition to a liquid phase at room temperature for this eutectic composition is primarily driven by van-der-Waals attractions between the hydrophobic portions of the components. Our theoretical findings are significant from both scientific and practical perspectives, as they provide valuable insights into the relationship between the microscopic structure of a deep eutectic mixture and its transport properties.
1. M. A. R. Martins, S. P. Pinho, J. A. P. Coutinho. J. Sol. Chem. 48 (7), 962-982 (2019). https://doi.org/10.1007/s10953-018-0793-1 |
||||
2. M. Cherniakova, V. Varchenko, K. Belikov. Chem. Record 24 (2), e202300267 (2024). https://doi.org/10.1002/tcr.202300267 |
||||
3. T. Khezeli, M. Ghaedi, S. Bahrani et al. In New generation green solvents for separation and preconcentration of organic and inorganic species, Elsevier, pp 381-423 (2020). https://doi.org/10.1016/B978-0-12-818569-8.00009-7 |
||||
4. P. Makoś, E. Słupek, J. Gębicki. Microchem. J. 152, 104384 (2020). https://doi.org/10.1016/j.microc.2019.104384 |
||||
5. S. E. E. Warrag, M. C. Kroon. In Deep Eutectic Solvents, Wiley VCH Verlag GmbH & Co. KGaA., pp 83-93 (2019). https://doi.org/10.1002/9783527818488.ch5 |
||||
6. M. Zhang, X. Zhang, Y. Liu et al. Environ. Sci. Pollut. Res. 28 (27), 35537-35563 (2021). https://doi.org/10.1007/s11356-021-14485-2 |
||||
7. D. O. Abranches, M. A. R. Martins, L. P. Silva et al. Chem. Commun. 55 (69), 10253-10256 (2019). https://doi.org/10.1039/C9CC04846D |
||||
8. M. A. R. Martins, E. A. Crespo, P. V. A. Pontes et al. ACS Sustainable Chem. Eng. 6 (7), 8836-8846 (2018). https://doi.org/10.1021/acssuschemeng.8b01203 |
||||
9. A. Abri, N. Babajani, A. M. Zonouz et al. J. Mol. Liq. 285, 477-487 (2019). https://doi.org/10.1016/j.molliq.2019.04.001 |
||||
10. S. M. Sorouraddin, M. A. Farajzadeh, H. Dastoori. Talanta 208, 120485 (2020). https://doi.org/10.1016/j.talanta.2019.120485 |
||||
11. A. Elik, D. Bingöl, N. Altunay. Food Chem. 350, 129237 (2021). https://doi.org/10.1016/j.foodchem.2021.129237 |
||||
12. D. J. G. P. van Osch, C. H. J. T. Dietz, J. van Spronsen et al. ACS Sustainable Chem. Eng. 7 (3), 2933-2942 (2019). https://doi.org/10.1021/acssuschemeng.8b03520 |
||||
13. W. Tang, K. H. Row. J. Cleaner Production 268, 122306 (2020). https://doi.org/10.1016/j.jclepro.2020.122306 |
||||
14. T. Ahmadi-Jouibari, N. Noori, N. Fattahi. Toxin Rev. 40 (4), 1084-1093 (2021). https://doi.org/10.1080/15569543.2019.1633543 |
||||
15. D. Raj. J. Chromatogr. A 1621, 461044 (2020). https://doi.org/10.1016/j.chroma.2020.461044 |
||||
16. M. Nedaei, A. R. Zarei, S. A. Ghorbanian. New J. Chem. 42 (15), 12520-12529 (2018). https://doi.org/10.1039/C8NJ02219D |
||||
17. M. Y. Cherniakova, O. V. Vashchenko, I. O. Zinchenko et al. Funct. Mater. 31 (4), 619-629 (2024). | ||||
18. M. Marchel, M. P. Rayaroth, C. Wang et al. Chem. Engineer. J. 475, 144971 (2023). https://doi.org/10.1016/j.cej.2023.144971 |
||||
19. A. Kyriakoudi, I. Radojčić Redovniković, S. Vidović et al. RSC Sustain. 2 (6), 1675-1691 (2024). https://doi.org/10.1039/D4SU00111G |
||||
20. M. Y. Cherniakova, O. V. Vashchenko, J. M. Stolper et al. New J. Chem. 48 (33), 14527-14531 (2024). https://doi.org/10.1039/D4NJ02497D |
||||
21. N. Schaeffer, D. O. Abranches, L. P. Silva et al. ACS Sustainable Chem. Eng. 9 (5), 2203-2211 (2021). https://doi.org/10.1021/acssuschemeng.0c07874 |
||||
22. D. K. Panda, B. L. Bhargava. J. Mol. Graph. Model. 113, 108152 (2022). https://doi.org/10.1016/j.jmgm.2022.108152 |
||||
23. U. L. Abbas, Q. Qiao, M. T. Nguyen et al. AIChE J. 68 (1), e17382 (2022). https://doi.org/10.1002/aic.17382 |
||||
24. A. Malik, H. K. Kashyap. J. Chem. Phys. 155 (4), 044502 (2021). https://doi.org/10.1063/5.0054699 |
||||
25. S. Barani pour, J. Jahanbin Sardroodi, A. Rastkar Ebrahimzadeh et al. Sci. Rep. 12 (1), 5153 (2022). https://doi.org/10.1038/s41598-022-09185-x |
||||
26. J. P. Bittner, I. Smirnova, S. Jakobtorweihen. Molecules 29 (3), 703 (2024). https://doi.org/10.3390/molecules29030703 |
||||
27. M. A. Ali, M. A. Kaium, S. N. Uddin et al. ACS Omega 8 (41), 38243-38251 (2023). https://doi.org/10.1021/acsomega.3c04570 |
||||
28. S. Kaur, M. Kumari, H. K. Kashyap. J. Phys. Chem. B 124 (47), 10601-10616 (2020). https://doi.org/10.1021/acs.jpcb.0c07934 |
||||
29. W. L. Jorgensen, J. Tirado-Rives. Proc Natl Acad Sci USA 102 (19), 6665-6670 (2005). https://doi.org/10.1073/pnas.0408037102 |
||||
30. L. S. Dodda, I. Cabeza de Vaca, J. Tirado-Rives et al. Nucl. Acids Res. 45 (W1), W331-W336 (2017). https://doi.org/10.1093/nar/gkx312 |
||||
31. G. Bussi, D. Donadio, M. Parrinello. J. Chem. Phys. 126 (1), 014101 (2007). https://doi.org/10.1063/1.2408420 |
||||
32. T. Darden, D. York, L. Pedersen. J. Chem. Phys. 98 (12), 10089-10092 (1993). https://doi.org/10.1063/1.464397 |
||||
33. B. Hess, H. Bekker, H. J. C. Berendsen et al. J. Comput. Chem. 18 (12), 1463-1472 (1997). https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H |
||||
34. B. Hess. J. Chem. Theory Comput. 4 (1), 116-122 (2008). https://doi.org/10.1021/ct700200b |
||||
35. D. Van Der Spoel, E. Lindahl, B. Hess et al. J. Comput. Chem. 26 (16), 1701-1718 (2005). https://doi.org/10.1002/jcc.20291 |
||||
36. W. Humphrey, A. Dalke, K. Schulten. J. Mol. Graphics 14 (1), 33-38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5 |
||||
37. A. Malik, H. K. Kashyap. Phys. Chem. Chem. Phys. 23 (6), 3915-3924 (2021). https://doi.org/10.1039/D0CP05407K |
||||
38. S. Chatterjee, T. Chowdhury, S. Bagchi. J. Phys. Chem. B 128 (51), 12669-12684 (2024). https://doi.org/10.1021/acs.jpcb.4c06295 |
||||
39. B. D. Ribeiro, C. Florindo, L. C. Iff et al. ACS Sustainable Chem. Eng. 3 (10), 2469-2477 (2015). https://doi.org/10.1021/acssuschemeng.5b00532 |
||||
40. G. Mannucci, M. Busato, A. Tofoni et al. J. Mol. Liq. 375, 121302 (2023). https://doi.org/10.1016/j.molliq.2023.121302 |
||||
41. L. de Villiers Engelbrecht, N. Cibotariu, X. Ji et al. J. Chem. Engineer. Data 70 (1), 19-43 (2025). https://doi.org/10.1021/acs.jced.4c00505 |
||||
42. A. Kyrychenko, J. Herbich, M. Izydorzak et al. J. Am. Chem. Soc. 121 (48), 11179-11188 (1999). https://doi.org/10.1021/ja991817z |
||||
43. A. Kyrychenko, Y. Stepanenko, J. Waluk. J. Phys. Chem. A 104 (42), 9542-9555 (2000). https://doi.org/10.1021/jp000921w |
||||
44. P. Makoś-Chełstowska, E. Słupek, S. Fourmentin et al. Environ. Chem. Lett. 23 (1), 41-65 (2025). https://doi.org/10.1007/s10311-024-01795-3 |