Funct. Mater. 2025; 32 (1): 77-86.

doi:https://doi.org/10.15407/fm32.01.77

Microstructure, dynamics, and temperature behavior of L-menthol, salicylaldoxime, and their binary mixture: a molecular dynamics simulation study

M. Yu. Cherniakova,1 A.V. Kyrychenko,1,2 K. N. Belikov1,3

1 Institute of Functional Materials Chemistry, State Scientific Institution ``Institute for Single Crystals’’, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv 61072, Ukraine
2 Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022, Ukraine.
3 School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022, Ukraine.

Abstract: 

Deep eutectic solvents are mixtures of various substances classified as liquid supramolecular systems, which have a wide range of scientific, practical, and technological applications. This study investigated the molecular aspects involved in creating a deep eutectic binary mixture of L-menthol and salicylaldoxime using classical molecular dynamics simulations. We focused on the microstructure and dynamics of intermolecular interactions for both the individual components and their binary mixture at temperatures of 298, 333, and 353 K. Our findings revealed that, at a macroscopic scale, there is a nearly uniform distribution of components in the binary mixture of L-menthol and salicylaldoxime, with no phase separation or domain formation observed within the examined temperature range. We noted a significant increase in self-diffusion coefficients in the formation of the binary mixture, with these coefficients further increasing at higher temperatures. Through hydrogen bonding analysis and radial distribution functions, we demonstrated that the formation of the binary mixture resulted in changes to the solution’s microstructure, including a considerable reduction in the number of intermolecular hydrogen bonds. Consequently, the transition to a liquid phase at room temperature for this eutectic composition is primarily driven by van-der-Waals attractions between the hydrophobic portions of the components. Our theoretical findings are significant from both scientific and practical perspectives, as they provide valuable insights into the relationship between the microscopic structure of a deep eutectic mixture and its transport properties.

Keywords: 
deep eutectic solvent, binary mixture, solution microstructure, intermolecular interaction, molecular dynamics modeling, supramolecular chemistry, organized molecular system.
References: 
1. M. A. R. Martins, S. P. Pinho, J. A. P. Coutinho. J. Sol. Chem. 48 (7), 962-982 (2019).
https://doi.org/10.1007/s10953-018-0793-1
 
2. M. Cherniakova, V. Varchenko, K. Belikov. Chem. Record 24 (2), e202300267 (2024).
https://doi.org/10.1002/tcr.202300267
 
3. T. Khezeli, M. Ghaedi, S. Bahrani et al. In New generation green solvents for separation and preconcentration of organic and inorganic species, Elsevier, pp 381-423 (2020).
https://doi.org/10.1016/B978-0-12-818569-8.00009-7
 
4. P. Makoś, E. Słupek, J. Gębicki. Microchem. J. 152, 104384 (2020).
https://doi.org/10.1016/j.microc.2019.104384
 
5. S. E. E. Warrag, M. C. Kroon. In Deep Eutectic Solvents, Wiley VCH Verlag GmbH & Co. KGaA., pp 83-93 (2019).
https://doi.org/10.1002/9783527818488.ch5
 
6. M. Zhang, X. Zhang, Y. Liu et al. Environ. Sci. Pollut. Res. 28 (27), 35537-35563 (2021).
https://doi.org/10.1007/s11356-021-14485-2
 
7. D. O. Abranches, M. A. R. Martins, L. P. Silva et al. Chem. Commun. 55 (69), 10253-10256 (2019).
https://doi.org/10.1039/C9CC04846D
 
8. M. A. R. Martins, E. A. Crespo, P. V. A. Pontes et al. ACS Sustainable Chem. Eng. 6 (7), 8836-8846 (2018).
https://doi.org/10.1021/acssuschemeng.8b01203
 
9. A. Abri, N. Babajani, A. M. Zonouz et al. J. Mol. Liq. 285, 477-487 (2019).
https://doi.org/10.1016/j.molliq.2019.04.001
 
10. S. M. Sorouraddin, M. A. Farajzadeh, H. Dastoori. Talanta 208, 120485 (2020).
https://doi.org/10.1016/j.talanta.2019.120485
 
11. A. Elik, D. Bingöl, N. Altunay. Food Chem. 350, 129237 (2021).
https://doi.org/10.1016/j.foodchem.2021.129237
 
12. D. J. G. P. van Osch, C. H. J. T. Dietz, J. van Spronsen et al. ACS Sustainable Chem. Eng. 7 (3), 2933-2942 (2019).
https://doi.org/10.1021/acssuschemeng.8b03520
 
13. W. Tang, K. H. Row. J. Cleaner Production 268, 122306 (2020).
https://doi.org/10.1016/j.jclepro.2020.122306
 
14. T. Ahmadi-Jouibari, N. Noori, N. Fattahi. Toxin Rev. 40 (4), 1084-1093 (2021).
https://doi.org/10.1080/15569543.2019.1633543
 
15. D. Raj. J. Chromatogr. A 1621, 461044 (2020).
https://doi.org/10.1016/j.chroma.2020.461044
 
16. M. Nedaei, A. R. Zarei, S. A. Ghorbanian. New J. Chem. 42 (15), 12520-12529 (2018).
https://doi.org/10.1039/C8NJ02219D
 
17. M. Y. Cherniakova, O. V. Vashchenko, I. O. Zinchenko et al. Funct. Mater. 31 (4), 619-629 (2024).
 
18. M. Marchel, M. P. Rayaroth, C. Wang et al. Chem. Engineer. J. 475, 144971 (2023).
https://doi.org/10.1016/j.cej.2023.144971
 
19. A. Kyriakoudi, I. Radojčić Redovniković, S. Vidović et al. RSC Sustain. 2 (6), 1675-1691 (2024).
https://doi.org/10.1039/D4SU00111G
 
20. M. Y. Cherniakova, O. V. Vashchenko, J. M. Stolper et al. New J. Chem. 48 (33), 14527-14531 (2024).
https://doi.org/10.1039/D4NJ02497D
 
21. N. Schaeffer, D. O. Abranches, L. P. Silva et al. ACS Sustainable Chem. Eng. 9 (5), 2203-2211 (2021).
https://doi.org/10.1021/acssuschemeng.0c07874
 
22. D. K. Panda, B. L. Bhargava. J. Mol. Graph. Model. 113, 108152 (2022).
https://doi.org/10.1016/j.jmgm.2022.108152
 
23. U. L. Abbas, Q. Qiao, M. T. Nguyen et al. AIChE J. 68 (1), e17382 (2022).
https://doi.org/10.1002/aic.17382
 
24. A. Malik, H. K. Kashyap. J. Chem. Phys. 155 (4), 044502 (2021).
https://doi.org/10.1063/5.0054699
 
25. S. Barani pour, J. Jahanbin Sardroodi, A. Rastkar Ebrahimzadeh et al. Sci. Rep. 12 (1), 5153 (2022).
https://doi.org/10.1038/s41598-022-09185-x
 
26. J. P. Bittner, I. Smirnova, S. Jakobtorweihen. Molecules 29 (3), 703 (2024).
https://doi.org/10.3390/molecules29030703
 
27. M. A. Ali, M. A. Kaium, S. N. Uddin et al. ACS Omega 8 (41), 38243-38251 (2023).
https://doi.org/10.1021/acsomega.3c04570
 
28. S. Kaur, M. Kumari, H. K. Kashyap. J. Phys. Chem. B 124 (47), 10601-10616 (2020).
https://doi.org/10.1021/acs.jpcb.0c07934
 
29. W. L. Jorgensen, J. Tirado-Rives. Proc Natl Acad Sci USA 102 (19), 6665-6670 (2005).
https://doi.org/10.1073/pnas.0408037102
 
30. L. S. Dodda, I. Cabeza de Vaca, J. Tirado-Rives et al. Nucl. Acids Res. 45 (W1), W331-W336 (2017).
https://doi.org/10.1093/nar/gkx312
 
31. G. Bussi, D. Donadio, M. Parrinello. J. Chem. Phys. 126 (1), 014101 (2007).
https://doi.org/10.1063/1.2408420
 
32. T. Darden, D. York, L. Pedersen. J. Chem. Phys. 98 (12), 10089-10092 (1993).
https://doi.org/10.1063/1.464397
 
33. B. Hess, H. Bekker, H. J. C. Berendsen et al. J. Comput. Chem. 18 (12), 1463-1472 (1997).
https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
 
34. B. Hess. J. Chem. Theory Comput. 4 (1), 116-122 (2008).
https://doi.org/10.1021/ct700200b
 
35. D. Van Der Spoel, E. Lindahl, B. Hess et al. J. Comput. Chem. 26 (16), 1701-1718 (2005).
https://doi.org/10.1002/jcc.20291
 
36. W. Humphrey, A. Dalke, K. Schulten. J. Mol. Graphics 14 (1), 33-38 (1996).
https://doi.org/10.1016/0263-7855(96)00018-5
 
37. A. Malik, H. K. Kashyap. Phys. Chem. Chem. Phys. 23 (6), 3915-3924 (2021).
https://doi.org/10.1039/D0CP05407K
 
38. S. Chatterjee, T. Chowdhury, S. Bagchi. J. Phys. Chem. B 128 (51), 12669-12684 (2024).
https://doi.org/10.1021/acs.jpcb.4c06295
 
39. B. D. Ribeiro, C. Florindo, L. C. Iff et al. ACS Sustainable Chem. Eng. 3 (10), 2469-2477 (2015).
https://doi.org/10.1021/acssuschemeng.5b00532
 
40. G. Mannucci, M. Busato, A. Tofoni et al. J. Mol. Liq. 375, 121302 (2023).
https://doi.org/10.1016/j.molliq.2023.121302
 
41. L. de Villiers Engelbrecht, N. Cibotariu, X. Ji et al. J. Chem. Engineer. Data 70 (1), 19-43 (2025).
https://doi.org/10.1021/acs.jced.4c00505
 
42. A. Kyrychenko, J. Herbich, M. Izydorzak et al. J. Am. Chem. Soc. 121 (48), 11179-11188 (1999).
https://doi.org/10.1021/ja991817z
 
43. A. Kyrychenko, Y. Stepanenko, J. Waluk. J. Phys. Chem. A 104 (42), 9542-9555 (2000).
https://doi.org/10.1021/jp000921w
 
44. P. Makoś-Chełstowska, E. Słupek, S. Fourmentin et al. Environ. Chem. Lett. 23 (1), 41-65 (2025).
https://doi.org/10.1007/s10311-024-01795-3

Current number: