Funct. Mater. 2025; 32 (3): 471-486.
New pharmaceutical materials with analgesic activity based on 1,2,3-triazolo-1,4-benzodiazepine
1 National University of Pharmacy, Hryhoriia Skovorody street 53,61002, Kharkiv (Ukraine)
2 Medical University of Warsaw, Banacha str.,1, 02-097, Warsaw, Poland
3 Institute of Functional Materials Chemistry, State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, Nauky Avenue 60,61072, Kharkiv, Ukraine
4 Faculty of Chemistry, V. N. Karazin Kharkiv National University, Svobody Square 4,61022, Kharkiv, Ukraine
Medicines and their components are essential molecular functional materials while developing and transferring them into production is a priority for many interdisciplinary research teams. Hybrid compounds that integrate multiple potent pharmacophoric fragments are regarded as highly promising candidates in the development of such materials. Hence, the incorporation of 1,2,3-triazole moieties into conventional 1,4-benzodiazepine frameworks presents a promising strategy. This structural modification is anticipated to enhance drug-receptor interactions and improve pharmacological profiles by increasing selectivity for specific GABA-A receptor subtypes. The objective of this study was to assess new functional materials for pharmaceutical use derived from 1,2,3-triazolo-1,4-benzodiazepine compounds. The research specifically focused on conducting molecular docking studies at the benzodiazepine site of the GABA receptor, evaluating their safety profile in vitro, and determining their analgesic potential in vivo. During the molecular docking study of five compounds for their binding affinity towards the benzodiazepine site of the GABA receptor, a detailed analysis of the formed complexes indicated that all S-configurations of the new compounds exhibit a binding mode in the benzodiazepine site comparable to classical benzodiazepines. The findings demonstrated that the investigated derivatives do not negatively impact cell proliferation in the MTT and NRU tests. No genotoxicity of the investigated derivatives was observed under the conditions of the umu-test. Additionally, it has been established that the compounds exhibit moderate antinociceptive activity in experimental models involving both peripheral and central mechanisms of pain reaction formation.
1. Coteur, K., Mamouris, P., Vaes, B., Van Nuland, M., Mathe, C., Schoenmakers, B. (2022). Evolution of benzodiazepine receptor agonist prescriptions in general practice: A registry-based study. Frontiers in Public Health, 10, 1014734. doi: https://doi.org/10.3389/fpubh.2022.1014734
2. Ritvo, A. D., Foster, D. E., Huff, C., Finlayson, A. J. R., Silvernail, B., Martin, P. R. (2023). Long-term consequences of benzodiazepine-induced neurological dysfunction: A survey. PLOS ONE, 18(6), e0285584. doi: https://doi.org/10.1371/journal.pone.0285584
3. Aziz Ali, A. (2021). 1,2,3-Triazoles: Synthesis and Biological Application. In A. Kuznetsov (Ed.), Azoles - Synthesis, Properties, Applications and Perspectives. IntechOpen. doi: https://doi.org/10.5772/intechopen.92692
4. Maramai, S., Benchekroun, M., Ward, S. E., Atack, J. R. (2020). Subtype Selective γ-Aminobutyric Acid Type A Receptor (GABAAR) Modulators Acting at the Benzodiazepine Binding Site: An Update. Journal of Medicinal Chemistry, 63(7), 3425–3446. doi: https://doi.org/10.1021/acs.jmedchem.9b01312
5. Padhyar, K. T., Patil, R. S., Wadwale, N. B. (2022). A brief review on Triazole and its Pharmacological Application. International Journal of Current Science Research and Review, 05(01). doi: https://doi.org/10.47191/ijcsrr/V5-i1-25
6. Kharb, R., Sharma, P. C., Yar, M. S. (2011). Pharmacological significance of triazole scaffold. Journal of Enzyme Inhibition and Medicinal Chemistry, 26(1), 1–21. doi: https://doi.org/10.3109/14756360903524304
7. Ankali, K. N., Rangaswamy, J., Shalavadi, M., Naik, N. (2022). Synthesis, Molecular Docking and In Vivo Biological Evaluation of Iminostilbene Linked 1,2,3-Triazole Pharmacophores as Promising Anti- Anxiety and Anti-Inflammatory Agents. Medicinal Chemistry (Shariqah (United Arab Emirates)), 18(2), 260–272. doi: https://doi.org/10.2174/1573406417666210608141746
8. Deng, X., Sun, H., Youssif, B. G. M. (2023). Editorial: Pharmaceutical insights into the triazoles: Recent advances. Frontiers in Chemistry, 11, 1149133. doi: https://doi.org/10.3389/fchem.2023.1149133
9. Dai, J., Tian, S., Yang, X., Liu, Z. (2022). Synthesis methods of 1,2,3-/1,2,4-triazoles: A review. Frontiers in Chemistry, 10. doi: https://doi.org/10.3389/fchem.2022.891484
10. Guina, J., Merrill, B. (2018). Benzodiazepines I: Upping the Care on Downers: The Evidence of Risks, Benefits and Alternatives. Journal of Clinical Medicine, 7(2), 17. doi: https://doi.org/10.3390/jcm7020017
11. Duke, A. N., Meng, Z., Platt, D. M., Atack, J. R., Dawson, G. R., Reynolds, D. S., Tiruveedhula, V. V. N. P. B., Li, G., Stephen, M. R., Sieghart, W., Cook, J. M., Rowlett, J. K. (2018). Evidence That Sedative Effects of Benzodiazepines Involve Unexpected GABAA Receptor Subtypes: Quantitative Observation Studies in Rhesus Monkeys. The Journal of Pharmacology and Experimental Therapeutics, 366(1), 145–157. doi: https://doi.org/10.1124/jpet.118.249250
12. Botsula, I., Schavikin, J., Heinämäki, J., Laidmäe, I., Mazur, M., Raal, A., Koshovyi, O., Kireyev, I., Chebanov, V. (2024). Application of nanofiber-based drug delivery systems in improving anxiolytic effect of new 1,2,3-triazolo-1,4-benzodiazepine derivatives. European Journal of Pharmaceutical Sciences, 106712. doi: https://doi.org/10.1016/j.ejps.2024.106712
13. Botsula, I. V., Kireyev, I. V., Mazur, M. O., Chebanov, V. A. (2024). The study of antidepressant properties of new 1,2,3-triazolo-1,4-benzodiazepine derivatives. News of Pharmacy, 107(1), 136–143. doi: https://doi.org/10.24959/nphj.24.144
14. Botsula, I. V., Kireyev, I. V., Koshovyi, O. M., Mazur, M. O., Chebanov, V. A. (2023). Behavioral reactions of rodents after administration of the 1,2,3-triazolo-1,4-benzodiazepine derivatives in the open field test. Pharmaceutical review, (4), 70–77. doi: https://doi.org/10.11603/2312-0967.2023.4.14297
15. Griessner, J., Pasieka, M., Böhm, V., Grössl, F., Kaczanowska, J., Pliota, P., Kargl, D., Werner, B., Kaouane, N., Strobelt, S., Kreitz, S., Hess, A., Haubensak, W. (2021). Central amygdala circuit dynamics underlying the benzodiazepine anxiolytic effect. Molecular Psychiatry, 26(2), 534–544. doi: https://doi.org/10.1038/s41380-018-0310-3
16. Rosso, M., Wirz, R., Loretan, A. V., Sutter, N. A., Pereira da Cunha, C. T., Jaric, I., Würbel, H., Voelkl, B. (2022). Reliability of common mouse behavioural tests of anxiety: A systematic review and meta-analysis on the effects of anxiolytics. Neuroscience & Biobehavioral Reviews, 143, 104928. doi: https://doi.org/10.1016/j.neubiorev.2022.104928
17. Mazur, M. O., Zhelavskyi, O. S., Zviagin, E. M., Shishkina, S. V., Musatov, V. I., Kolosov, M. A., Shvets, E. H., Andryushchenko, A. Y., Chebanov, V. A. (2021). Effective microwave-assisted approach to 1,2,3-triazolobenzodiazepinones via tandem Ugi reaction/catalyst-free intramolecular azide-alkyne cycloaddition. Beilstein Journal of Organic Chemistry, 17, 678–687. doi: https://doi.org/10.3762/bjoc.17.57
18. Mohapatra, R. K., Perekhoda, L., Azam, M., Suleiman, M., Sarangi, A. K., Semenets, A., Pintilie, L., & Al-Resayes, S. I. (2021). Computational investigations of three main drugs and their comparison with synthesized compounds as potent inhibitors of SARS-CoV-2 main protease (Mpro): DFT, QSAR, molecular docking, and in silico toxicity analysis. Journal of King Saud University. Science, 33(2), 101315. https://doi.org/10.1016/j.jksus.2020.101315
19. Botsula, I., Kireyev, I., Koshovyi, O., Heinämäki, J., Ain, R., Mazur, M., Chebanov, V. (2024). Semi-solid extrusion 3D printing of functionalized polyethylene oxide gels loaded with 1,2,3-triazolo-1,4-benzodiazepine nanofibers and valine-modified motherwort (Leonurus cardiaca L.) dry extract. ScienceRise: Pharmaceutical Science, (1(47)), 40–48. doi: https://doi.org/10.15587/2519-4852.2024.299205
20. Zgadzaj, A., Kornacka, J., Jastrzębska, A., Parzonko, A., Sommer, S., Nałęcz-Jawecki, G. (2018). Development of photoprotective, antiphototoxic, and antiphotogenotoxic formulations of ocular drugs with fluoroquinolones. Journal of Photochemistry and Photobiology B: Biology, 178, 201–210. doi: https://doi.org/10.1016/j.jphotobiol.2017.11.011
21. OECD (2010). Guidance Document on Using Cytotoxicity Tests to Estimate Starting Doses for Acute Oral Systematic Toxicity Tests, OECD Series on Testing and Assessment, No. 129, OECD Publishing, Paris, doi: https://doi.org/10.1787/d77a7e39-en.
22. Meyer, D., Marin-Kuan, M., Debon, E., Serrant, P., Cottet-Fontannaz, C., Schilter, B., Morlock, G. E. (2021). Detection of low levels of genotoxic compounds in food contact materials using an alternative HPTLC-SOS-Umu-C assay. ALTEX - Alternatives to animal experimentation, 38(3), 387–397. doi: https://doi.org/10.14573/altex.2006201
23. Molecular Toxicology Inc. - MOLTOX. Available at: https://moltox.com/categories.php?parent=54&name=UMU%20Genotoxicity%20Te...
24. Skrzypczak, A., Przystupa, N., Zgadzaj, A., Parzonko, A., Sykłowska-Baranek, K., Paradowska, K., Nałęcz-Jawecki, G. (2015). Antigenotoxic, anti-photogenotoxic and antioxidant activities of natural naphthoquinone shikonin and acetylshikonin and Arnebia euchroma callus extracts evaluated by the umu-test and EPR method. Toxicology in Vitro, 30(1, Part B), 364–372. doi: https://doi.org/10.1016/j.tiv.2015.09.029
25. Bannon, A. W., Malmberg, A. B. (2007). Models of Nociception: Hot-Plate, Tail-Flick, and Formalin Tests in Rodents. Current Protocols in Neuroscience, 41(1). doi: https://doi.org/10.1002/0471142301.ns0809s41
26. Deuis, J. R., Dvorakova, L. S., Vetter, I. (2017). Methods Used to Evaluate Pain Behaviors in Rodents. Frontiers in Molecular Neuroscience, 10, 284. doi: https://doi.org/10.3389/fnmol.2017.00284
27. Nunes, E. A., Medeiros, L. F., de Freitas, J. S., Macedo, I. C., Kuo, J., de Souza, A., Rozisky, J. R., Caumo, W., Torres, I. L. S. (2017). Morphine exposure during early life alters thermal and mechanical thresholds in rats. International Journal of Developmental Neuroscience, 60, 78–85. doi: https://doi.org/10.1016/j.ijdevneu.2016.12.008
28. Drapak, I., Zimenkovsky, B., Perekhoda, L., Yeromina, H., Ieromina, Z., Paykush, M., Logoyda, L., Lubenets, V., Holubieva, T., Yaremkevych, R., Shchur, O., Seredynska, N. (2022). Synthesis of New 3-Morpholyl-Substituted 4-Aryl-2-Arylimino-2,3-Dihydrothiazole Derivatives and Their Anti-Inflammatory and Analgesic Activity. Chemistry & Chemical Technology, 16(4), 532–542. doi: https://doi.org/10.23939/chcht16.04.532
29. Directive 2010/63/EU of the European Parliament and of the Council on the protection of animals used for scientific purposes. (2010). Official Journal of the European Communities, L 256, 33–79.
30. Guide for the Care and Use of Laboratory Animals: Eighth Edition. (2011). Washington, D.C.: National Academies Press. doi: https://doi.org/10.17226/12910
31. Richter, L., de Graaf, C., Sieghart, W., Varagic, Z., Mörzinger, M., de Esch, I. J., Ecker, G. F., Ernst, M. (2012). Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site ligands. Nature chemical biology, 8(5), 455–464. doi: https://doi.org/10.1038/nchembio.917
32. Sieghart, W. (2015). Allosteric modulation of GABAA receptors via multiple drug-binding sites. Advances in Pharmacology (San Diego, Calif.), 72, 53–96. doi: https://doi.org/10.1016/bs.apha.2014.10.002
33. Elgarf, A. A., Siebert, D. C. B., Steudle, F., Draxler, A., Li, G., Huang, S., Cook, J. M., Ernst, M., Scholze, P. (2018). Different Benzodiazepines Bind with Distinct Binding Modes to GABAA Receptors. ACS Chemical Biology, 13(8), 2033–2039. doi: https://doi.org/10.1021/acschembio.8b00144
34. Singh, R. K., Prasad, D. N., Bhardwaj, T. R. (2017). Design, synthesis and in vitro cytotoxicity study of benzodiazepine-mustard conjugates as potential brain anticancer agents. Journal of Saudi Chemical Society, 21, S86–S93. doi: https://doi.org/10.1016/j.jscs.2013.10.004
35. Dourlat, J., Liu, W.-Q., Gresh, N., Garbay, C. (2007). Novel 1,4-benzodiazepine derivatives with antiproliferative properties on tumor cell lines. Bioorganic & Medicinal Chemistry Letters, 17(9), 2527–2530. doi: https://doi.org/10.1016/j.bmcl.2007.02.016
36. Francis, T. M., Sundberg, T. B., Cleary, J., Groendyke, T., Opipari, A. W., Glick, G. D. (2006). Identification of cytotoxic, T-cell-selective 1,4-benzodiazepine-2,5-diones. Bioorganic & Medicinal Chemistry Letters, 16(9), 2423–2427. doi: https://doi.org/10.1016/j.bmcl.2006.01.113
37. Almeida, I. V. de, Domingues, G., Soares, L. C., Düsman, E., Vicentini, V. E. P. (2014). Evaluation of cytotoxicity and mutagenicity of the benzodiazepine flunitrazepam in vitro and in vivo. Brazilian Journal of Pharmaceutical Sciences, 50(2), 251–256. doi: https://doi.org/10.1590/S1984-82502014000200003
38. Mizuno, K., Katoh, M., Okumura, H., Nakagawa, N., Negishi, T., Hashizume, T., Nakajima, M., Yokoi, T. (2009). Metabolic activation of benzodiazepines by CYP3A4. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 37(2), 345–351. doi: https://doi.org/10.1124/dmd.108.024521
39. Zeilhofer, H. U., Neumann, E., Munro, G. (2019). Spinal GABAA receptors for pain control: back to the future? BJA: British Journal of Anaesthesia, 123(2), e176–e179. doi: https://doi.org/10.1016/j.bja.2019.01.030
40. Casarrubea, M., Sorbera, F., Santangelo, A., Crescimanno, G. (2012). The effects of diazepam on the behavioral structure of the rat′s response to pain in the hot-plate test: anxiolysis vs. pain modulation. Neuropharmacology, 63(2), 310–321. doi: https://doi.org/10.1016/j.neuropharm.2012.03.026
41. Pavlovsky, V. I., Tsymbalyuk, O. V., Martynyuk, V. S., Kabanova, T. A., Semenishyna, E. A., Khalimova, E. I., Andronati, S. A. (2013). Analgesic Effects of 3-Substituted Derivatives of 1,4-Benzodiazepines and their Possible Mechanisms. Neurophysiology, 45(5), 427–432. doi: https://doi.org/10.1007/s11062-013-9389-y
42. Wright, S. L. (2020). Limited Utility for Benzodiazepines in Chronic Pain Management: A Narrative Review. Advances in Therapy, 37(6), 2604–2619. doi: https://doi.org/10.1007/s12325-020-01354-6
43. Zeilhofer, H. U., Möhler, H., Di Lio, A. (2009). GABAergic analgesia: new insights from mutant mice and subtype-selective agonists. Trends in Pharmacological Sciences, 30(8), 397-402. doi: https://doi.org/10.1016/j.tips.2009.05.007