Funct. Mater. 2025; 32 (4): 515-531.
3-hydroxyflavone derivatives as activators of radiation-resistant plastic scintillator
Institute of Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, Kharkiv, Ukraine
The work is devoted to the development of radiation-resistant polystyrene based plastic scintillators, suitable for use in modern experiments in high-energy physics. The main attention is paid to the search and synthesis of radiation-resistant activators, derivatives of 3-hydroxyflavone. In the work, a number of fluoro-, phenyl-, fluorophenyl- and fluoroalkyl derivatives of 3-hydroxyflavone were obtained. With the obtained activators, radiation-resistant plastic scintillators were developed and their scintillation characteristics and radiation stability were investigated. The light output half-attenuation dose of the created scintillators reaches 49 Mrad.
1. АTLAS Collab, 2008. The ATLAS Experiment at the CERN Large Hadron Collider. Journal of Instrumentation. 3, S08003. https://doi.org/10.1088/1748-0221/3/08/S08003
2. CMS Collab, 2008. The CMS experiment at the CERN Large Hadron Collider. Journal of Instrumentation. 3, S08004. https://doi.org/10.1088/1748-0221/3/08/S08004
3. LHCb Collab, 2008. The Large Hadron Collider beauty experiment at the CERN Large Hadron Collider. Journal of Instrumentation. 3, S08005. https://doi.org/10.1088/1748-0221/3/08/S08005
4. Kuraray’s Scintillation Materials. Kuraray, Chemicals Manufacturer. https://www-he.scphys.kyoto-u.ac.jp/~nakaya/T2K280m/FGD/kuraray_fiber.pdf, 2025 (date of application: July 27, 2025)
5. Luxium Solutions, Plastic Scintillators: GENERAL PURPOSE. https://luxiumsolutions.com/radiation-detection-scintillators/plastic-sc..., 2025 (date of application: June 26, 2025)
6. Amcrys, Polystyrene-based Scintillators. http://www.amcrys.com/details.html?cat_id=146&id=4286, 2025 (date of application: August 10, 2025)
7. V. Baranov et al., Effects of neutron radiation on the optical and structural properties of blue and green emitting plastic scintillators, Nuclear Inst. and Methods in Physics Research, B. 436 (2018) 236-243. https://doi.org/10.1016/j.nimb.2018.10.002
8. J. Wetzel et al., Using LEDs to stimulate the recovery of radiation damage to plastic scintillators, Nuclear Inst. and Methods in Physics Research, B. 395 (2017) 13-16. https://doi.org/10.1016/j.nimb.2017.01.081
9. J. Harmon, J. Gaynor, V. Feygelman, J. Walker, Linear polydiorgano-siloxanes as plastic bases for radiation hard scintillators, Nuclear Inst. and Methods in Physics Research, B. 53(3) (1991) 309-314. https://doi.org/10.1016/0168-583X(91)95619-O
10. M. Bowen et al., A new radiation-resistant plastic scintillator, IEEE Transactions on Nuclear Science. 36(1) (1989) 562-566. https://doi.org/10.1109/23.34501
11. A. Quaranta et al., Radiation hardness of polysiloxane scintillators analyzed by ion beam induced luminescence, Nuclear Inst. and Methods in Physics Research, B. 268(19) (2010) 3155-3159. https://doi.org/10.1016/j.nimb.2010.05.077
12. F. Acerbi et al., Polysiloxane-based scintillators for shashlik calorimeters, Nuclear Instrum. and Methods in Physics Research, A. 956 (2020) 163379-163390. https://doi.org/10.1016/j.nima.2019.163379
13. A.D. Bross, A. Pla-Dalmau, Radiation induced hidden absorption effects in polystyrene based plastic scintillator, ACS Symposium Series. 475 (1991) 578-590. https://doi.org/10.1021/bk-1991-0475.ch037
14. A.D. Bross, A. Pla-Dalmau, Radiation damage of plastic scintillators, IEEE Transactions on Nuclear Science. 39 (5) (1992) 1199-1204 https://doi.org/10.1109/23.173178
15. T.О. White, Scintillating Fibers, Nuclear Instrum. and Methods in Physics Research, A. 273 (1988) 820-825. http://dx.doi.org/10.1016/j.nima.2019.162996
16. G.I. Britvich et al. Radiation Damage Studies on Polystyrene-Based Scintillators, Nuclear Instrum. and Methods in Physics Research, A. 326 (1993) 483-488. https://doi.org/10.1016/0168-9002(93)90849-D
17. A.D. Bross, A. Pla-Dalmau, Radiation Effects in Intrinsic 3HF Scintillator, Nuclear Inst. and Methods in Physics Research, A. 327(2-3) (1993) 337-345. https://doi.org/10.1016/0168-9002(93)90699-I
18. B.V. Grinev, V.G. Senchishin, Plastic scintillators, Akta, Kharkiv, 2003 (Ukr).
19. L.M. Bollinger, G.E. Thomas, Measurement of the time dependence of scintillation intensity by a delayed-coincidence method, Rev. Sci. Instrum. 32 (9) (1961) 1044-1050. https://ui.adsabs.harvard.edu/link_gateway/1961RScI...32.1044B/doi:10.10...
20. M.I. Aizatskyi et al., State and prospects of the linac of nuclear-physics complex with energy of electrons up to 100 MeV, Problems of atomic science and technology. 91(3) (2014) 60-63. https://nasplib.isofts.kiev.ua/handle/123456789/79978
21. J.B. Birks, The Theory and Practice of Scintillation Counting. Pergamon Press, London, 1964.
22. Yu.A. Gurkalenko et al., Radiation-hard plastic scintillators with 3-hydroxyflavone derivatives, Functional Material, 23(1) (2016) 040-044. https://doi.org/10.15407/fm23.01.040
23. Zhmurin P.N., Gurkalenko Yu.A., Pereymak V.N., Eliseev D.A., Eliseeva O.V. Plastic scintillators with the improved radiation hardness level. Engineering of Scintillation Materials and Radiation Technologies : Selected Articles of ISMART2018// eds. M. Korzhik, A. Gektin: Springer Proceedings in Physics. 2019. Vol. 227. P. 125-147. https://doi.org/10.1007/978-3-030-21970-3_10
24. L.M. Yagupolsky, Y.L. Yagupolsky, G.I. Matyushecheva, Chemistry of fluoroorganic compounds. Journal of Org. and Pharmaceutical Chemistry. 7 (2) 26 (2009) 47-61. (Ukr) https://nuph.edu.ua/wp-content/uploads/2015/04/%D0%96%D0%9E%D0%A4%D0%A5-...
25. A. Haupt, Organic and Inorganic Fluorine Chemistry: Methods and Applications, De Gruyter, Berlin, 2021.
26. Photomultiplier TUBE R1307, Hamamatsu Photonics. https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/document... (date of application: August 1, 2025)
27. Yu.A. Gurkalenko et al., The plastic scintillator activated with fluorinated 3-hydroxyflavone, Functional Materials, 24 (2) (2017) 244-249.https://doi.org/10.15407/fm24.02.244
28. Yu.A. Gurkalenko et al., Enhance of the polystyrene based plastic scintillator radiation hardness: using fluorine-derivatives of 3-hydroxyflavone, Functional Materials. 25 (4) (2018) 670-674. https://doi.org/10.15407/fm25.04.670
29. O.V. Eliseeva, P.M. Zhmurin, Y.O. Gurkalenko, D.A. Eliseev, V.D. Alekseev, Increasing the radiation resistance of a plastic scintillator, International School-Seminar Functional Materials for Technical and Biomedical Applications, September 9-12, 2019: abstracts. Kharkiv, 2019. P. 27.
30. P.M. Zhmurin, D.A. Yeliseyev, V.M. Pereymak, O.V. Yeliseeva, Y.O. Gurkalenko. Radiation-resistant plastic scintillator: pat. 120078 UА: MPK G01T 1/203. No. 201807527; appl. 05.07.2018; publ. 25.09.2019, Bull. No. 18. 3 p.
31. J.B. Schlenoff, J.Dharia, K.F. Johnson. Low self-absorbing, intrinsically scintillating polymers: pat. 93/22306 WO : Int. Cl. C07D 311/04, C08F 216/36, C08F 220/14, 220/08, 220/42. № 07/874,748; filed. 27.04.1992; publ. 20.04.1993.
32. B.V. Grinyev, D.A. Yeliseyev, P.M. Zhmurin, V.M. Lebedev, V.M. Pereymak, V.D. Tytska. Plastic scintillator: pat. 103443 Ukraine: MPK G01T 1/203. No. 201213387; appl. 23.11.2012; publ. 10.10.2013, Bull. No. 19. 5 p.
33. E. Kowalski, R. Anliker, K. Schmid, Performance Parameters of some New Efficient and highly soluble Solutes for Liquid Scintillators, Molecular Crystals, 4 (1968) 403-413. https://doi.org/10.1080/15421406808082926
34. P.N. Zhmurin et al., 3-Hydroxyflavone tert-butyl fluorine derivative as activator of plastic scintillators, Functional Materials. 28 (2) (2021) 241-244. https://doi.org/10.15407/fm28.02.241
35. P.N. Zhmurin et al., Radiation hardness of plastic scintillators activated by tert-butylfluoroderivatives of 3-hydroxyflavone, Functional Materials, 29 (1) (2022) 39-43. https://doi.org/10.15407/fm29.01.39
36. D.A. Yeliseyev, Y.O. Gurkalenko, O.V. Yeliseeva, Tert-butylfluoroderivative of 3-hydroxyflavone as an activator of a plastic scintillator, Problems of scientific and practical activity: search for innovative solutions: IV All-Ukrainian multidisciplinary scientific and practical Internet conference, September 20, 2021: abstracts of the supplement Kherson, 2021, pp. 32-37.
37. Pla-Dalmau A. Design of Fluorescent Compounds for Scintillation Detection: Thesis PhD: Northern Illinois University, DeKalb, IL, 1990, 200 р.
38. D.A. Yelisieiev et al., Radiation-resistant plastic scintillators. Nuclear Physics and Atomic Energy. 26 (1) (2025) 86-92. https://doi.org/10.15407/jnpae2025.01.086