Funct. Mater. 2025; 32 (4): 544-552.

doi:https://doi.org/10.15407/fm32.04.544

Isomorphous substitution of strontium by sodium and rare-earth elements in molybdates with the scheelite-type structure Sr1-x(Na0.5Ln0.5)xMoO4, where Ln = La–Lu

E.I. Get′man, S.V. Radio

Vasyl′ Stus Donetsk National University, Vinnytsia, Ukraine

Abstract: 

Using the crystal energy theory of isomorphous miscibility, the mixing energies, critical decomposition temperatures, and substitution limits were calculated, and the thermodynamic stability ranges of solid solutions Sr1-x(Na0.5Ln0.5)xMoO4 (where Ln represents rare-earth elements, REEs) were determined. It was shown that both the mixing energies and the critical decomposition temperatures increase systematically with the REE atomic number. A thermodynamic stability diagram and dependencies of solubility limits of the solid solutions were built for concentrations ranging from x = 0 to x = 1.0 with a step of Δx = 0.05. These diagrams allow one to determine the limits of equilibrium substitution at a given decomposition temperature, decomposition temperatures for a specified substitution limit, or the thermodynamically stable composition regions. The results may be helpful for immobilizing radioactive isotopes of REEs, actinides, and strontium-90 in nuclear waste disposal and developing new inorganic materials for phosphors and lasers.

Keywords: 
molybdates, rare-earth elements, strontium, solid solution, scheelite-type structure, isomorphous substitution, thermodynamic stability
References: 

1. Grechanovsky A.E., Eremin N.N., Urusov V.S. Phys. Solid State, 55, 1929 (2013). https://doi.org/10.1134/S1063783413090138

2. Bosbach D., Rabung T., Brandt F., Fanghänel T. Radiochim. Acta, 92, 639 (2004). https://doi.org/10.1524/ract.92.9.639.54976

3. Meng C., Li W., Ren C., Zhao J. J. Mater. Sci., 55, 2741 (2020). https://doi.org/10.1007/s10853-019-04223-y

4. Skiter E., Vtornikova Е. Nuclear and Radiation Safety, No. 2 (78), 36 (2018). https://doi.org/10.32918/nrs.2018.2(78).06

5. Li D., Huang Zh., Nie Zh., Zhang L., Bai Y., Zhang X., Song Y., Wang Y. J. Alloy. Compd., 650, 799 (2015). https://doi.org/10.1016/j.jallcom.2015.07.005

6. Mokhosoev M.V., Alekseev F.P., Lutsyk V.I. Diagrammy sostoyaniya molibdatnykh i vol′framtnykh system [State diagrams of molybdate and tungsten systems]. Novosibirsk, Nauka, 1978, 320 p. (In Russian)

7. Hallaoui A., Taoufyq A., Arab M., Bakiz B., Benlhachemi A., Bazzi L., Villain S., Valmalette J.-C., Guinneton F., Gavarri J.-R. J. Solid State Chem., 227, 186 (2015). http://dx.doi.org/10.1016/j.jssc.2015.04.004

8. Hallaoui A., Taoufyq A., Arab M., Bakiz B., Benlhachemi A., Bazzi L., Valmalette J.-C., Villain S., Guinneton F., Gavarri J.-R. Mater. Res. Bull., 79, 121 (2016). https://doi.org/10.1016/j.materresbull.2016.03.015

9. Singh N.K., Sharma S., Choudhary R.N.P. Indian J. Pure Ap. Phy., 37, 595 (1999).

10. Zhuravlev V.D., Reznitskikh O.G., Velikodnyi Yu.A., Patrusheva T.A., Sivtsova O.V. J. Solid State Chem., 184, 2785 (2011). https://doi.org/10.1016/j.jssc.2011.08.003

11. Zhuravlev V.D., Reznitskikh O.G. J. Struct. Chem., 53, 100 (2012). https://doi.org/10.1134/S002247661201012X

12. Gupta S.K., Sudarshan K., Yadav A.K., Gupta R., Bhattacharyya D., Jha S.N., Kadam R.M. Inorg. Chem., 57, 821 (2018). https://doi.org/10.1021/acs.inorgchem.7b02780

13. Ansari A.A., Alam M., Parchur A.K. Appl. Phys. A, 116, 1719 (2014). https://doi.org/10.1007/s00339-014-8308-4

14. Meshkova S.B., Topilova Z.M., Dotsenko V.P., Kovalevskaya I.P., Kiriyak A.V. Functional Materials, 11, 290 (2004). http://functmaterials.org.ua/contents/11-2/FM112-33.pdf

15. Schmidt M., Heck S., Bosbach D., Ganschow S., Waltherd C., Stumpf T. Dalton Trans., 42, 8387 (2013). https://doi.org/10.1039/C3DT50146A

16. Chang L.L.Y. J. Inorg. Nucl. Chem., 31, 2003 (1969). https://doi.org/10.1016/0022-1902(69)90014-1

17. Cho Y.-S., Huh Y.-D. Bull. Korean Chem. Soc., 32, 1353 (2011). https://doi.org/10.5012/bkcs.2011.32.4.1353

18. Dudnikova V.B., Antonov D.I., Zharikov E.V., Eremin N.N. Phys. Solid State+, 64, 1713 (2022). https://doi.org/10.21883/PSS.2022.11.54195.413

19. Li X., Hu Y.-H., Wang Y.-H., Fu Ch.-J., Wu H.-Y., Kang F.-W., Ju G.-F., Mou Zh.-F. Journal of Guangdong University of Technology, 27, 32 (2010). https://caod.oriprobe.com//articles/26031729/On_the_Synthesis_of_NaxSr1_...

20. Boatner L.A. Rev. Mineral. Geochem., 48, 87 (2002). https://doi.org/10.2138/rmg.2002.48.4

21. Shannon R.D. Acta Cryst. A32, 751 (1976). https://doi.org/10.1107/S0567739476001551

22. Belov A.A., Shichalin O.O., Papynov E.K., Buravlev I.Y., Portnyagin A.S., Azon S.A., Fedorets A.N., Vornovskikh A.A., Kolodeznikov E.S., Gridasova E.A., Pogodaev A., Kondrikov N.B., Shi Y., Tananaev I.G. Materials, 16, 5838 (2023). https://doi.org/10.3390/ma16175838

23. Urusov V.S. Teoriia izomorfnoi smesimosti [Theory of isomorphous miscibility], Nauka, Moskva. 1977. 251 p. (In Russian)

24. Spassky D., Vasil′ev A., Nagirnyi V., Kudryavtseva I., Deyneko D., Nikiforov I., Kondratyev I., Zadneprovski B. Materials, 15, 6844 (2022). https://doi.org/10.3390/ma15196844

25. Voznyak-Levushkina V.S., Arapova A.A., Spassky D.A., Nikiforov I.V., Zadneprovski B.I. Phys. Solid State, 64, 567 (2022). https://doi.org/10.1134/S1063783422110130

26. Get′man E.I., Radio S.V., Ardanova L.I. Inorg. Mater., 54, 596 (2018). https://doi.org/10.1134/S0020168518060031

27. Templeton D.H. J. Chem. Phys., 21, 2097 (1953). https://doi.org/10.1063/1.1698788

28. Li K., Xue D. J. Phys. Chem. A, 110, 11332 (2006). https://doi.org/10.1021/jp062886k

29. Batsanov S.S. Russ. Chem. Rev., 37, 332 (1968). https://doi.org/10.1070/RC1968v037n05ABEH001639

30. Yevdokimov A.A., Yefremov V.A., Trunov V.K., Kleynman I.A., Dzhurinskiy B.F. Soyedineniya redkozemel′nykh elementov. Molibdaty, vol′framaty [Compounds of rare earth elements. Molybdates, tungstates]. Moskva: Nauka, 1991, 267 p. (in Russian)

31. Batsanov S.S. Strukturnaya khimiya. Fakty i zavisimosti [Structural chemistry. Facts and dependencies]. Мoskva: Dialog-MGU, 2000. (in Russian)

32. Becker R. Z. Metallkunde, 29, 245 (1937). (in German)

33. Gürmen E., Daniels E., King J.S. J. Chem. Phys., 55, 1093 (1971). https://doi.org/10.1063/1.1676191

34. Get′man E.I., Mariichak O.Y., Ardanova L.I., Radio S.V. In: Fesenko O., Yatsenko L. (eds) Nanomaterials and Nanocomposites, Nanostructures, and Their Applications. NANO 2023. Springer Proceedings in Physics, 253, 453 (2024). Vol. 253. P. 453–468. https://doi.org/10.1007/978-3-031-67519-5_31

35. Tokarev M.G., Potanina E.A., Orlova A.I., Khainakov S.A., Boldin M.S., Lantsev E.A., Sakharov N.V., Murashov A.A., Garcia-Granda S., Nokhrin A.V., Chuvil′deev V.N. Inorg Mater., 55, 730 (2019). https://doi.org/10.1134/S0020168519070203

Current number: