Funct. Mater. 2025; 32 (4): 562-566.

doi:https://doi.org/10.15407/fm32.04.562

Electrochemical properties of composite materials “lithium titanate–TiO2” synthesized by one-step rapid synthesis method

A.S.Smolyar1, А.О.Burkhan1, O.M.Bloshchanevich1, A.I.Stegniy1, A.V.Stepanenko1, M.P.Brodnikovskyy1, V.E.Sheludko1, V.G.Khomenko2, О.V.Kovtun3

1 I.N. Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Omeliana Pritsaka (Krzhizhanovsky) Str., 03142 Kyiv, Ukraine
2Kyiv National University of Technologies and Design, Department of Chemical Technology and Resource Saving, 2 Mala Shyianovska Str., 01011 Kyiv, Ukraine
3M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation, National Academy of Sciences of Ukraine, 34 Akademika Palladina Ave., 03142 Kyiv, Ukraine

Abstract: 

Lithium titanates are known as promising materials for anodes of lithium-ion batteries. Intensive research is being conducted on the synthesis of various lithium titanate composites to improve the electrophysical characteristics of batteries. Micropowders of the composites (lithium titanate – TiO2) were obtained by heat treatment of the batch (Li2CO3 + Ti) in the temperature range of 900-1000 °C for 4 minutes using the one-step rapid synthesis method developed by the authors. The phase composition and structure of the composites were studied using a DRON-3M diffractometer and a JSM-6700F SEM. Based on the composites synthesized at a temperature of 975 °C, prototypes of experimental cells with a lithium electrode were manufactured. Cycling in the range of 0-3 V relative to the lithium electrode at a current density of 15 mA/g showed a reversible capacity of 101 mA·h/g. The obtained test results confirm the possibility of using composites for lithium-titanium batteries.

Keywords: 
lithium titanate, TiO<sub>2</sub>, composite, electrochemical properties
References: 

1. G.Zubi, R.Dufo-López, M.Carvalho et al., Renew. Sust. Energ. Rev., 89, 292 (2018). https://doi.org/10.1016/j.rser.2018.03.002.

2. Wen Qi, J.G.Shapter, Qian Wu et al., J. Mater. Chem. A., 5, 19521 (2017). https://doi.org/10.1039/C7TA05283A.

3. I.L.Tazhibaeva, E.A.Kenzhin, T.V.Kulsartov et al., VANT. Ser. Termoyadernyj sintez, 2, 3 (2008).

4. Y.Wang, A.Zhou, X.Dai et al., J. Power Sources, 266, 114 (2014). doi: 10.1016/j.jpowsour.2014.05.002.

5. Yu Zhang, Yun Zhang, Ling Huang et al, Electrochim. Acta, 195, 124 (2016). https://doi.org/10.1016/j.electacta.2016.02.092.

6. Zhenguo Yang, Daiwon Choi, S.Kerisit et al., J. Power Sources, 192, 588 (2009). https://doi.org/10.1016/j.jpowsour.2009.02.038.

7. T.Ohtake and K.Iijima, J. Mater. Sci. Chem. Eng., 3, 68 (2015). https://doi.org/10.4236/msce.2015.39009.

8. K.Kanamura, T.Chiba, K.Dokko, J. Eur. Ceram. Soc., 26, 577 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.06.014.

9. Tao Yuan, Rui Cai, Ke Wang et al., Ceram. Int., 35, 1757 (2009). https://doi.org/10.1016/j.ceramint.2008.10.010.

10. Ting-Feng Yi, Zi-Kui Fang, Ying Xie et al., ACS Appl. Mater. Interfaces., 6, 20205 (2014). https://doi.org/10.1021/am5057568.

11. O.M.Ponomarenko, L.M.Stepanyuk, A.S.Smolyar et al., Mineralogical J., 45, 3 (2023). https://doi.org/10.15407/mineraljournal.45.04.003.

12. A.O.Burkhan, O.M.Bloshchanevich, A.S.Smolyar et al., in: Book Abstr. Int. Conf. “Materiali dlya roboti v ekstremalnih umovah — 11”, Kyiv, Ukraine (2021), p. 168.

1. I.V.Lisovskyi, S.O.Solopan, A.G.Belous et al., J. Appl. Electrochem., 52, 1701 (2022). https://doi.org/10.1007/s10800-022-01773-1.

14. V.Barsukov, V.Khomenko, and O. Chernysh, Mater. Today, 50, 415 (2022). https://doi.org/10.1016/j.matpr.2021.12.263.

15. Yanan Li, Qianlin Chen, Qiangqiang Meng et al., ACS Appl. Mater. Interfaces., 11, 25804 (2019). https://doi.org/10.1021/acsami.9b04041.

16. S.Goripart, E.Miele, F.De Angelis et al., J. Power Sources, 257, 421 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.103.

Current number: