Funct. Mater. 2025; 32 (4): 562-566.
Electrochemical properties of composite materials “lithium titanate–TiO2” synthesized by one-step rapid synthesis method
1 I.N. Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Omeliana Pritsaka (Krzhizhanovsky) Str., 03142 Kyiv, Ukraine
2Kyiv National University of Technologies and Design, Department of Chemical Technology and Resource Saving, 2 Mala Shyianovska Str., 01011 Kyiv, Ukraine
3M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation, National Academy of Sciences of Ukraine, 34 Akademika Palladina Ave., 03142 Kyiv, Ukraine
Lithium titanates are known as promising materials for anodes of lithium-ion batteries. Intensive research is being conducted on the synthesis of various lithium titanate composites to improve the electrophysical characteristics of batteries. Micropowders of the composites (lithium titanate – TiO2) were obtained by heat treatment of the batch (Li2CO3 + Ti) in the temperature range of 900-1000 °C for 4 minutes using the one-step rapid synthesis method developed by the authors. The phase composition and structure of the composites were studied using a DRON-3M diffractometer and a JSM-6700F SEM. Based on the composites synthesized at a temperature of 975 °C, prototypes of experimental cells with a lithium electrode were manufactured. Cycling in the range of 0-3 V relative to the lithium electrode at a current density of 15 mA/g showed a reversible capacity of 101 mA·h/g. The obtained test results confirm the possibility of using composites for lithium-titanium batteries.
1. G.Zubi, R.Dufo-López, M.Carvalho et al., Renew. Sust. Energ. Rev., 89, 292 (2018). https://doi.org/10.1016/j.rser.2018.03.002.
2. Wen Qi, J.G.Shapter, Qian Wu et al., J. Mater. Chem. A., 5, 19521 (2017). https://doi.org/10.1039/C7TA05283A.
3. I.L.Tazhibaeva, E.A.Kenzhin, T.V.Kulsartov et al., VANT. Ser. Termoyadernyj sintez, 2, 3 (2008).
4. Y.Wang, A.Zhou, X.Dai et al., J. Power Sources, 266, 114 (2014). doi: 10.1016/j.jpowsour.2014.05.002.
5. Yu Zhang, Yun Zhang, Ling Huang et al, Electrochim. Acta, 195, 124 (2016). https://doi.org/10.1016/j.electacta.2016.02.092.
6. Zhenguo Yang, Daiwon Choi, S.Kerisit et al., J. Power Sources, 192, 588 (2009). https://doi.org/10.1016/j.jpowsour.2009.02.038.
7. T.Ohtake and K.Iijima, J. Mater. Sci. Chem. Eng., 3, 68 (2015). https://doi.org/10.4236/msce.2015.39009.
8. K.Kanamura, T.Chiba, K.Dokko, J. Eur. Ceram. Soc., 26, 577 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.06.014.
9. Tao Yuan, Rui Cai, Ke Wang et al., Ceram. Int., 35, 1757 (2009). https://doi.org/10.1016/j.ceramint.2008.10.010.
10. Ting-Feng Yi, Zi-Kui Fang, Ying Xie et al., ACS Appl. Mater. Interfaces., 6, 20205 (2014). https://doi.org/10.1021/am5057568.
11. O.M.Ponomarenko, L.M.Stepanyuk, A.S.Smolyar et al., Mineralogical J., 45, 3 (2023). https://doi.org/10.15407/mineraljournal.45.04.003.
12. A.O.Burkhan, O.M.Bloshchanevich, A.S.Smolyar et al., in: Book Abstr. Int. Conf. “Materiali dlya roboti v ekstremalnih umovah — 11”, Kyiv, Ukraine (2021), p. 168.
1. I.V.Lisovskyi, S.O.Solopan, A.G.Belous et al., J. Appl. Electrochem., 52, 1701 (2022). https://doi.org/10.1007/s10800-022-01773-1.
14. V.Barsukov, V.Khomenko, and O. Chernysh, Mater. Today, 50, 415 (2022). https://doi.org/10.1016/j.matpr.2021.12.263.
15. Yanan Li, Qianlin Chen, Qiangqiang Meng et al., ACS Appl. Mater. Interfaces., 11, 25804 (2019). https://doi.org/10.1021/acsami.9b04041.
16. S.Goripart, E.Miele, F.De Angelis et al., J. Power Sources, 257, 421 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.103.