Funct. Mater. 2025; 32 (4): 595-600.

doi:https://doi.org/10.15407/fm32.04.595

Study and some physical and chemical properties of alloys of the Pb6Sb2Bi6Se18–Pb5Bi18Se32 system

Sh.H. Mammadov1, I.B.Bakhtiyarli1, R.J.Kurbanova1, G.N.Ismayilova2,Sh.B.Huseynova1

1Institute of Catalysis and Inorganic Chemistry named after Acad. M.F. Naghiyev, Azerbaijan, AZ 1143, Baku, H. Javid Ave. 113.
2Azerbaijan State Pedagogical University, Azerbaijan, Baku. AZ 1000, Str. U. Gadzhibeyova 68.

Abstract: 

Complex chalcogenides based on AIVBVI–AVBVI compounds are valuable materials for the production of efficient and environmentally friendly thermoelectric materials. The development of new materials with unique properties and the improvement of the practical characteristics of existing compounds largely depend on the physicochemical interactions within the corresponding systems. To study the Pb6Sb2Bi6Se18–Pb5Bi18Se32 system, the starting materials were first synthesized directly from the elements. From the synthesized ligatures, 12 samples with varying compositions were prepared. The synthesis of the samples was carried out at 900–1000 K in evacuated and sealed quartz ampoules. The synthesis process lasted 3.5 hours. After melting, the alloys were gradually cooled at a rate of 10–15°C/hour down to 650 K and homogenized at this temperature for 250 h.Phase equilibria in the Pb6Sb2Bi6Se18–Pb5Bi18Se32 system were experimentally studied using differential thermal analysis and powder X-ray diffraction methods. Based on the results obtained, the T–x phase diagram of the Pb6Sb2Bi6Se18–Pb5Bi18Se32 system was constructed. The section Funder investigation is a partial quasibinary section of the pseudo-ternary PbSe–Sb2Se3–Bi2Se3 system and is of eutectic type. The coordinates of the eutectic point were determined to be 775 K with a composition of 45 mol% Pb5Bi18Se32. At room temperature, a solubility region of up to 8 mol% Pb5Bi18Se32 was observed based on the Pb6Sb2Bi6Se18 compound. However, practically no solubility region was found based on the Pb5Bi18Se32 compound.

Keywords: 
eutectic; system; congruent; Pb<sub>5</sub>Bi<sub>18</sub>Se<sub>32</sub>; incongruent; diagram; electrical conductivity; thermo-emf
References: 

1. S. Sassi, C. Candolfi, V. Ohorodniichuk, C. Gendarme, P. Masschelein, A. Dauscher, B. Lenoir, Journal of electronic materials, 46, 5, 2790(2017). https://doi.org/10.1007/s11664-016-4976-5

2. S. Sassi, C. Candolfi, C. Gendarme et al, Russ. J. Inorg. Chem., 47, 13,4714(2018). https://doi.org/10.1039/C7DT04916A

3. S. Sassi, C. Candolfi, A. Dauscher, B. Lenoir, Journal of electronic materials, 47, 6, 3198(2018). https://doi.org/10.1007/s11664-018-6061-8

4. D. Koumoulis, L. Fang, D. Y. Chung, M. G. Kanatzidis, L. S. Bouchard, Physical review. B. 101, 11, 1(2020). https://10.1103/PhysRevB.101.115309

5. Sh. K. Qudavasov, N. A. Abdullayev, J. N. Jalilli, Z. I. Badalova, I. A. Mamedova, S. A. Nemov, Semiconductors, 55, 12, 985(2021). https://10.1134/S1063782621080091

6. P. B Souza, M. A Tumelero, R. Faccio, A. Rasin, C Plá Cid Cristiani, G. Zangari, A. A. Pasa, Physical chemistry chemical physics, 25, 20, 14440(2023). https://10.1039/d2cp04945g

7. H. M. Benia, C. Lin, K. Kern, C. R. Ast, Physical review letters, 107, 17, 177602(2011). https://10.1103/PhysRevLett.107.177602

8. A. Gassoumi, M. Kanzari, Journal of Optoelectronics and Advanced Materials. 11, 414(2009).

9. H. Dittrich, K. Herz, J. Eberhard, G. Schumm, Proc.14th EU Photov. Sol. En. Conf., Barcelona, Spain, 2054(1997).

10. M. Y. Versavel, J. A. Haber, Thin solid films. 515, 15, 5767(2007)

11. M.G. Kanafzidis, M.Ohta, D.Y.Chung, J. Mater.Chem. A, 47, 20048(2014)

12. Hyung-Wook Jeon, Heon-Phil Ha, Dow-Bin Hyun, Journal of Physics and Chemistry of Solids, 52,4, 579(1991). https://doi.org/10.1016/0022-3697(91)90151-O

13. N.K. Jac, K. Massoud, Ji-Hoons, Physical Review, 23,7, 075119 (2016)

14. K.Manish, V.Athorn, S.Tosawat, G. G. H. Jeon, Energy Technol, 4, 3, 375(2016). https://10.1002/ente.201500296

15. K. Hoang, S.D. Mahanti, J. Androulakis, M. G. Kanatzidis, Mater. Res.Soc. Symp. Proc ,886, (2006)

16. O. L. Kheifets, L. Y. Kobelev, N. V. Melnikova, L. L. Nugaeva, Tech. Phys, 52,1, 86(2007). https://doi.org/10.1134/S106378420701015X

17. T. Wagner, M. Krbal, P. Nemec, M. Frumar, Th. Wagner,M. Vlcek, V. Perina, A. Mackova, V. Hnatovitz, S. O.Kasap, Appl. Phys. A. 79, 1563(2004). https://doi.org/10.1007/s00339-004-2848-y

18. T. Ohta, J. Optoelectron. Adv. Mater. 3,3, 609(2001).

19. Sh.H. Mammadov, A.N. Mammadov, R.C. Kurbanova, Russ. J. Inorg. Chem., 65,2, 217(2020) https://doi.org/10.1134/S003602362001012X

20. Sh.H. Mammadov, Kondensirovannye Sredy Mezhfaznye Granitsy, 22,2, 232(2020) https://doi.org/10.17308/kcmf.2020.22/2835

21. O.M. Aliyev, T.F. Maksudova, D.S. Azhdarova, Sh.G. Mamedov, Sh.A. Gamidova, Chemical Problems, 3,168(2021). https://10.32737/2221-8688-2021-3-168-172

22. Sh. H. Mammadov, G. R. Gurbanov, R. A. Ismailova,Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 22(2025). https://10.32434/0321-4095-2025-158-1-22-26

23. V.A. Rzaguliev, A.N. Mamedov, O.S.Kerimli, S.G.Mamedov, Russ. J. Inorg. Chem., 65,12,1899(2020). https://10.1134/S003602362012013X

24. R.A.Ismailova, S.G. Aliyev, G.N. Abdullaeva, M.Y. Sadigova, S.H.Mammadov, ChemChemTech, 63,10, 11(2020). https://10.6060/ivkkt.20206310.6211

25. G.R. Gurbanov, S.G. Mamedov, M.B. Adygezalova, Russ. J. Inorg. Chem. 62, 1659(2017). https://doi.org/10.1134/S0036023617120099

26. M.G. Kanatzidis, Acc. Chem. Res, 38, 4, 361(2005).

27. L. E. Shelimova,O. G. Karpinskii,P. P. Konstantinov,E. S. Avilov,M. A. Kretova,G. U. Lubman,I. Yu. Nikhezina,V. S. Zemskov, Inorg Mater, 46, 2,120(2010). https://doi.org/10.1134/S0020168510020068

Current number: